Vol. 175
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-11-10
Noninvasive Raman Imaging for Monitoring Mitochondrial Redox State in Septic Rats
By
Progress In Electromagnetics Research, Vol. 175, 149-157, 2022
Abstract
Raman imaging for a sepsis study is reported here for the first time. We propose a confocal resonance Raman microscopic imager (CRRMI)to measure in vivo the redox state of mitochondria over a surface area of a septic rat. The CRRMI has excellent performance with spectral and spatial resolutions of 0.1 nm and 2 um, respectively. It is found for the first time that the Raman signal related to the mitochondrial dysfunction in sepsis is abnormally large only locally at many points with some random spatial distribution. Our CRRMI can detect the mitochondrial redox state through the skin of a naturally living rat even without the removal of hairs, and overcomes some issues that a pointwise measurement method of Raman signalsmay encounter when monitoring mitochondrial dysfunction of a sepsis rat, such as the fluorescence of hairs, hitting the points without mitochondrial redox metabolic disorder, etc.The present Raman imager can be used for giving an early warning for sepsis. It provides a new method for noninvasive monitoring of mitochondrial redox status in sepsis.
Citation
Changwei Jiao, Zijian Lin, Yinghe Xu, and Sailing He, "Noninvasive Raman Imaging for Monitoring Mitochondrial Redox State in Septic Rats," Progress In Electromagnetics Research, Vol. 175, 149-157, 2022.
doi:10.2528/PIER22101504
References

1. Singer, M., C. S. Deutschman, C. W. Seymour, et al. "The third international consensus definitions for sepsis and septic shock (Sepsis-3)," JAMA, Vol. 315, 801-810, 2016.
doi:10.1001/jama.2016.0287

2. Evans, L., A. Rhodes, W. Alhazzani, et al. "Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021," Intensive Care Med., Vol. 47, 1181-1247, 2021.
doi:10.1007/s00134-021-06506-y

3. Rudd, K. E., S. C. Johnson, K. M. Agesa, et al. "Global, regional, and national sepsis incidence and mortality, 1990-2017: Analysis for the global burden of disease study," Lancet, Vol. 395, 200-211, 2020.
doi:10.1016/S0140-6736(19)32989-7

4. Cecconi, M., L. Evans, M. Levy, et al. "Sepsis and septic shock," Lancet, Vol. 392, 75-87, 2018.
doi:10.1016/S0140-6736(18)30696-2

5. Liu, V. X., Y. Lu, K. A. Carey, E. R. Gilbert, M. Afshar, M. Akel, N. S. Shah, J. Dolan, C. Winslow, P. Kipnis, D. P. Edelson, G. J. Escobar, and M. M. Churpek, "Comparison of early warning scoring systems for hospitalized patients with and without infection at risk for in-hospital mortality and transfer to the intensive care unit," JAMA Netw. Open, Vol. 3, e205191, 2020.
doi:10.1001/jamanetworkopen.2020.5191

6. Reinhart, K., R. Daniels, N. Kissoon, F. R. Machado, R. D. Schachter, and S. Finfer, "Recognizing sepsis as a global health priority --- A WHO resolution," N. Engl. J. Med., Vol. 377, 414-417, 2017.
doi:10.1056/NEJMp1707170

7. Singer, M., "The role of mitochondrial dysfunction in sepsis-induced multi-organ failure," Virulence, Vol. 5, 66-72, 2014.
doi:10.4161/viru.26907

8. Fink, M. P., "Cytopathic hypoxia, is oxygen use impaired in sepsis as a result of an acquired intrinsic derangement in cellular respiration?," Crit. Care Clin., Vol. 8, 165-175, 2002.
doi:10.1016/S0749-0704(03)00071-X

9. Galley, H. F., "Oxidative stress and mitochondrial dysfunction in sepsis," Br. J. Anaesth., Vol. 107, 57-64, 2011.
doi:10.1093/bja/aer093

10. Crouser, E. D., M. W. Julian, J. E. Huff, J. Struck, and C. H. Cook, "Carbamoyl phosphate synthase-1: A marker of mitochondrial damage and depletion in the liver during sepsis," Crit. Care Med., Vol. 34, 2439-2446, 2006.
doi:10.1097/01.CCM.0000230240.02216.21

11. Carré, J. E., J.-C. Orban, L. Re, K. Felsmann, W. Iffert, M. Bauer, H. B. Suliman, C. A. Piantadosi, T. M. Mayhew, P. Breen, M. Stotz, and M. Singer, "Survival in critical illness is associated with early activation of mitochondrial biogenesis," Am. J. Respir Crit. Care Med., Vol. 182, 745-751, 2010.
doi:10.1164/rccm.201003-0326OC

12. Robert, B., "Resonance Raman spectroscopy," Photosynthesis Research, Vol. 101, 147-155, 2009.
doi:10.1007/s11120-009-9440-4

13. Spiro, T. G., "Resonance Raman spectroscopy. New structure probe for biological chromophor," Acc. Chem. Res., Vol. 7, 339-344, 1974.
doi:10.1021/ar50082a004

14. Spiro, T. G. and T. C. Strekas, "Resonance Raman spectra of hemoglobin and cytochrome c: Inverse polarization and vibronic scattering," Proc. Natl. Acad. Sci., Vol. 69, 2622-2626, USA, 1972.
doi:10.1073/pnas.69.9.2622

15. Perry, D. A., J. W. Salvin, P. Romfh, P. L. Chen, K. Krishnamurthy, L. M. Thomson, B. D. Polizzotti, F. X. McGowan, D. Vakhshoori, and J. N. K, "Responsive monitoring of mitochondrial redox states in heart muscle predicts impending cardiac arrest," Sci. Transl. Med., Vol. 9, eaan0117, 2017.
doi:10.1126/scitranslmed.aan0117

16. Carré, J. E., J.-C. Orban, L. Re, K. Felsmann, W. Iffert, M. Bauer, H. B. Suliman, C. A. Piantadosi, T. M. Mayhew, P. Breen, M. Stotz, and M. Singer, "Survival in critical illness is associated with early activation of mitochondrial biogenesis," Am. J. Respir Crit. Care Med., Vol. 182, 745-751, 2010.
doi:10.1164/rccm.201003-0326OC

17. Lalonde, J. W., G. D. Noojin, N. J. Pope, S. M. Powell, V. V. Yakovlev, and M. L. Denton, "Continuous assessment of metabolic activity of mitochondria using resonance Raman microspectroscopy," Journal of Biophotonics, Vol. 14, e202000384, 202.

18. Morimoto, T., L. D. Chiu, H. Kanda, H. Kawagoe, T. Ozawa, M. Nakamura, K. Nishida, K. Fujita, and T. Fujikado, "Using redox-sensitive mitochondrial cytochrome Raman bands for label-free detection of mitochondrial dysfunction," Analyst, Vol. 144, 2531-2540, 2019.
doi:10.1039/C8AN02213E

19. Brazhe, N. A., M. Treiman, B. Faricelli, J. H. Vestergaard, and O. Sosnovtseva, "In situ Raman study of redox state changes of mitochondrial cytochromes in a perfused rat heart," PLoS One, Vol. 8, e70488, 2013.
doi:10.1371/journal.pone.0070488

20. Rittirsch, D., M. S. Huber-Lang, M. A. Flierl, and P. A. Ward, "Immunodesign of experimental sepsis by cecal ligation and puncture," Nat. Protoc., Vol. 4, 31-36, 2009.
doi:10.1038/nprot.2008.214

21. Brazhe, N. A., M. Treiman, A. R. Brazhe, N. L. Find, G. V. Maksimov, and O. V. Sosnovtseva, "Mapping of redox state of mitochondrial cytochromes in live cardiomyocytes using Raman microspectroscopy," PLoS One, Vol. 7, e41990, 2012.
doi:10.1371/journal.pone.0041990

22. Chen, Z., J. Liu, L. Tian, Q. Zhang, Y. Guan, L. Chen, G. Liu, H.-Q. Yu, Y. Tian, and Q. Huang, "Raman micro-spectroscopy monitoring of cytochrome c redox state in Candida utilis during cell death under low-temperature plasma-induced oxidative stress," Analyst, Vol. 145, 2020.

23. Brückner, M., K. Becker, J. Popp, and T. Frosch, "Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells," Analytica Chimica Acta, Vol. 894, 76-84, 2015.
doi:10.1016/j.aca.2015.08.025

24. Luo, J., S. Li, E. Forsberg, and S. He, "4D surface shape measurement system with high spectral resolution and great depth accuracy," OE, Vol. 29, 13048-13070, 2021.
doi:10.1364/OE.423755

25. Luo, J., Z. Lin, Y. Xing, E. Forsberg, C. Wu, X. Zhu, T. Guo, G. Wang, B. Bian, D. Wu, and S. He, "Portable 4D snapshot hyperspectral imager for fast spectral and surface morphology measurements," Progress In Electromagnetics Research, Vol. 173, 25-36, 2022.
doi:10.2528/PIER22021702

26. Li, J., F. Cai, Y. Dong, Z. Zhu, X. Sun, H. Zhang, and S. He, "A portable confocal hyperspectral microscope without any scan or tube lens and its application in uorescence and Raman spectral imaging," Optics Communications, Vol. 392, 1-6, 2017.
doi:10.1016/j.optcom.2017.01.031

27. Shen, F., H. Deng, L. Yu, and F. Cai, "Open-source mobile multispectral imaging system and its applications in biological sample sensing," Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, Vol. 280, 121504, 2022.
doi:10.1016/j.saa.2022.121504

28. Xu, Z., Y. Jiang, J. Ji, E. Forsberg, Y. Li, and S. He, "Classification, identification, and growth stage estimation of microalgae based on transmission hyperspectral microscopic imaging and machine learning," OE, Vol. 28, 30686, 2020.
doi:10.1364/OE.406036

29. Xu, Z., Y. Jiang, and S. He, "Multi-mode microscopic hyperspectral imager for the sensing of biological samples," Applied Sciences, Vol. 10, 4876, 2020.
doi:10.3390/app10144876