1. Weiland, T., "A discretization method for the solution of Maxwell’s equations for six-component fields," Electronics and Communications AEU, Vol. 31, No. 3, 116-120, 1977. Google Scholar
2. Tonti, E., "On the geometrical structure of electromagnetism," Gravitation, Electromagnetism and Geometrical Structures, G. Ferraese (ed.), 281–308, Pitagora, Bologna, 1996. Google Scholar
3. Bossavit, A., L. Kettunen, and T. Tarhassaari, "Some realizations of a discrete Hodge operator: A reinterpretation of the finite element technique," IEEE Transactions on Magnetics, Vol. 35, 1494-1497, May 1999.
doi:10.1109/20.767212 Google Scholar
4. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," Journal of Mathematical Physics, Vol. 40, No. 1, 169-187, 1999.
doi:10.1063/1.532767 Google Scholar
5. Nedelec, J. C., "Mixed finite elements in R3," Numerische Mathematik, No. 35, 315-341, 1980.
doi:10.1007/BF01396415 Google Scholar
6. van Rienen, U. and T. Weiland, "Triangular discretization method for the evaluation of RF-fields in cylindrically symmetric cavities," IEEE Transactions on Magnetics, Vol. 21, No. 6, 2317-2320, 1985.
doi:10.1109/TMAG.1985.1064183 Google Scholar
7. Schuhmann, R. and T. Weiland, "A stable interpolation technique for FDTD on nonorthogonal grids," International Journal on Numerical Modelling, Vol. 11, 299-306, May 1998.
doi:10.1002/(SICI)1099-1204(199811/12)11:6<299::AID-JNM314>3.0.CO;2-A Google Scholar
8. Thoma, P. and T. Weiland, "A consistent subgridding scheme for the finite difference time domain method," International Journal of Numerical Modelling, Vol. 9, 359-374, 1996.
doi:10.1002/(SICI)1099-1204(199609)9:5<359::AID-JNM245>3.0.CO;2-A Google Scholar
9. Chen, W. K., Graph Theory and It’s Engineering Applications, Vol. 5, Advanced Series in Electrical and Computer Engineering, World Scientific, Singapor, 1996.
10. Weiland, T., "Time domain electromagnetic field computation with finite difference methods," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 9, 259-319, 1996. Google Scholar
11. Clemens, M., "Zur numerischen Berechnung zeitlich langsamver ¨anderlicher elektromagnetischer Felder mit der Finiten- Integrations-Methode,", Ph.D. thesis, Technische Universitat Darmstadt, 1998. Google Scholar
12. Weiland, T., "Lossy waveguides with arbitrary boundary contour and distribution of material," Electronics and Communications AEU, Vol. 33, 170, 1979. Google Scholar
13. Muller, W. and W. Wolff, "Ein Beitrag zur numerischen Berechnung von Magnetfeldern," Elektrotechnische Zeitung, Vol. 96, 269-273, 1975. Google Scholar
14. Muller, W., J. Kr¨uger, A. Jacobus, R. Winz, T.Weiland, H. Euler, U. Kamm, and W. R. Novender, "Numerical solution of 2- and 3- dimensional nonlinear field problems by means of the computer program PROFI," Archiv fur Elektrotechnik, Vol. 65, 299-307, 1982.
doi:10.1007/BF01452154 Google Scholar
15. Krietenstein, B., P. Thoma, R. Schuhmann, and T. Weiland, "The perfect boundary approximation technique facing the big challenge of high precision computation," Proceedings of the 19th LINAC Conference, Chicago, August 1998. Google Scholar
16. Schuhmann, R. and T. Weiland, "FDTD on nonorthogonal grids with triangular fillings," IEEE Transactions on Magnetics, Vol. 35, 1470-1473, May 1999.
doi:10.1109/20.767244 Google Scholar
17. Clemens, M., M. Hilgner, R. Schuhmann, and T. Weiland, "Transient eddy current simulation using the nonorthogonal finite integration technique," Conference Records of the CEFC 2000, Milwaukee, 385, 2000. Full paper submitted to IEEE Transactions on Magnetics. Google Scholar
18. Gutschling, S., "Zeitbereichsverfahren zur simulation elektromagnetischer felder in dispersiven materialien," Ph.D. thesis, Technische Universitat Darmstadt, 1998. Google Scholar
19. Gutschling, S., H. Kruger, H. Spachmann, and T. Weiland, "FIT-formulation for nonlinear dispersive media," International Journal on Numerical Modelling, Vol. 12, 81-92, 1999. Google Scholar
20. Kruger, H., H. Spachmann, and T. Weiland, "FIT-formulation for gyrotropic media," Proceedings of the ICCEA1999, Torino, Italy, 1999. Google Scholar
21. Clemens, M., S. Drobny, and T. Weiland, "Time integration of slowly-varying electromagnetic field problems using the finite integration technique," Proceedings of the ENUMATH 97, 246-253, Heidelberg, 1999. Google Scholar
22. Bossavit, A. and L. Kettunen, "Yee-like schemes on a tetrahedral mesh, with diagonal lumping," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 12, No. 1/2, 129-142, 1999.
doi:10.1002/(SICI)1099-1204(199901/04)12:1/2<129::AID-JNM327>3.0.CO;2-G Google Scholar
23. Janich, K., Vektoranalysis, 191-222, Springer Lehrbuch, Springer, 1993.
doi:10.1007/978-3-662-10752-2
24. Weiland, T., "On the unique numerical solution of Maxwellian eigenvalue problems in three dimensions," Particle Accelerators, Vol. 17, 227-242, 1985. Google Scholar
25. Tonti, E., "Discrete formulation of the electromagnetic field,", University Trieste, 34127 Trieste, Italy, 1998. Google Scholar
26. Thoma, P. and T. Weiland, "Numerical stability of finite difference time domain methods," IEEE Transactions on Magnetics, Vol. 34, No. 5, 2740-2743, 1998.
doi:10.1109/20.717636 Google Scholar
27. Schmitt, D., "Zur numerischen berechnung von resonatoren und wellenleitern,", Ph.D. thesis, Technische Hochschule Darmstadt, 1994. Google Scholar
28. Hahne, P., "Zur numerischen berechnung zeitharmonischer elektromagnetischer felder,", Ph.D. thesis, Technische Hochschule Darmstadt, 1992. Google Scholar
29. Bossavit, A., "`stiff’ problems in eddy-current theory and the regularization of Maxell’s equations," Conference Records of the CEFC 2000, Milwaukee, 497, 1997. Full paper submitted to IEEE Transactions on Magnetics. Google Scholar
30. Grosmann, C. and H.-G. Roos, Numerik partieller Differentialgleichungen, B. G. Teubner Verlag, Stuttgart, 1994.
doi:10.1007/978-3-322-96752-7
31. Schuhmann, R. and T. Weiland, "Conservation of discrete energy and related laws in the finite integration technique,", this volume. Google Scholar
32. Zienkiewicz, O. C., "A new look at the Newmark, Houbolt and other time stepping formulas. A weighted residual approach," Earthquake Engineering and Structural Dynamics, Vol. 5, 413-418, 1977.
doi:10.1002/eqe.4290050407 Google Scholar
33. Zienkiewicz, O. C., W. L. Wood, N. H. Hine, and R. L. Taylor, "A unified set of single step algorithms; part 1," Int. J. for Num. Meth. in Eng., Vol. 20, 1529-1552, 1984.
doi:10.1002/nme.1620200814 Google Scholar
34. Monk, P., "A mixed method for approximating Maxwell’s equations," SIAM J. Numer. Anal., Vol. 28, 1610-1634, December 1991.
doi:10.1137/0728081 Google Scholar
35. Clemens, M. and T. Weiland, "Transient eddy current calculation with the FI-method," IEEE Transactions on Magnetics, Vol. 35, 1163-1166, May 1999.
doi:10.1109/20.767155 Google Scholar
36. Clemens, M. and T. Weiland, "Numerical algorithms for the FDiTD and FDFD simulation of slowly-varying electromagnetic fields," Int. J. Numerical Modelling, Special Issue on Finite Difference Time Domain and Frequency Domain Methods, Vol. 12, No. 1/2, 3-22, 1999. Google Scholar
37. Drobny, S., M. Clemens, and T. Weiland, "Dual nonlinear magnetostatic formulations using the finite integration technique," Conference Records of the CEFC 2000, Milwaukee, 392, 2000. Full paper submitted to IEEE Transactions on Magnetics. Google Scholar