Vol. 32
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Mimetic Finite Difference Methods for Maxwell's Equations and the Equations of Magnetic Diffusion
By
, Vol. 32, 89-121, 2001
Abstract
We have constructed mimetic finite difference methods for both the TE and TM modes for 2-D Maxwell's curl equations and equations of magnetic diffusion with discontinuous coefficients on nonorthogonal, nonsmooth grids. The discrete operators were derived using the discrete vector and tensor analysis to satisfy discrete analogs of the main theorems of vector analysis. Because the finite difference methods satisfy these theorems, they do not have spurious solutions and the "divergence-free" conditions for Maxwell's equations are automatically satisfied. The tangential components of the electric field and the normal components of magnetic flux used in the FDM are continuous even across discontinuities. This choice guarantees that problems with strongly discontinuous coefficients are treated properly. Furthermore on rectangular grids the method reduces to the analytically correct averaging for discontinuous coefficients. We verify that the convergence rate was between first and second order on the arbitrary quadrilateral grids and demonstrate robustness of the method in numerical examples.
Citation
J. M. Hyman M. Shashkov , "Mimetic Finite Difference Methods for Maxwell's Equations and the Equations of Magnetic Diffusion," , Vol. 32, 89-121, 2001.
doi:10.2528/PIER00080104
http://www.jpier.org/PIER/pier.php?paper=00080104
References

1. Adam, A. C., A. G. Serveniere, J. C. Nedelec, and P. A. Raviart, "Study of an implicit scheme for integrating Maxwell’s equations," Comput. Meth. Appl. Mech. Eng., Vol. 22, 327-346, 1980.
doi:10.1016/0045-7825(80)90004-3

2. Ardelyan, N. V., "The Convergence of difference schemes for two-dimensional equations of acoustics and Maxwell’s equations," USSR Comput. Math. and Math. Phys., Vol. 23, 93-99, 1983.
doi:10.1016/S0041-5553(83)80162-1

3. Bossavit, A., Computational Electromagnetism. Variational Formulations, Complementarity, Edge Elements, Academic Press, 1998.

4. Cai, Z., J. E. Jones, S. F. McCormick, and T. F. Russell, "Controlvolume mixed finite element methods," Comput. Geosci., Vol. 1, 289-315, 1997.
doi:10.1023/A:1011577530905

5. Chew, W. C., "Electromagnetic theory on a lattice," J. Appl. Phys., Vol. 75, 4843-4850, 1994.
doi:10.1063/1.355770

6. Denisov, A. A., A. V. Koldoba, and Yu. A. Poveshchenko, "The convergence to generalized solutions of difference schemes of the reference-operator method for Poisson’s equation," USSR Comput. Math. and Math. Phys., Vol. 29, 32-38, 1989.
doi:10.1016/0041-5553(89)90005-0

7. Dmitrieva, M. V., A. A. Ivanov, V. F. Tishkin, and A. P. Favorskii, "Construction and investigation of support-operators finitedifference schemes for Maxwell equations in cylindrical geometry," USSR Ac. of Sc., Vol. 27, Preprint Keldysh Inst. of Appl. Math., 1985 (in Russian).

8. Girault, V., "Theory of a finite difference methods on irregular networks," SIAM J. Numer. Anal., Vol. 11, 260-282, 1974.
doi:10.1137/0711026

9. Gustafsson, B., H.-O. Kreiss, and J. Oliger, Time Dependent Problems and Difference Methods, Vol. 11, 445-495, Wiley-Interscience Publication, John Wiley & Sons, Inc., 1995.

10. Hyman, J. M., S. Li, P. Knupp, and M. Shashkov, "An algorithm to align a quadrilateral grid with internal boundaries," J. Comp. Phys., Vol. 163, 133-149, 2000.
doi:10.1006/jcph.2000.6560

11. Hyman, J. M. and M. Shashkov, "Natural discretizations for the divergence, gradient, and curl on logically rectangular grids," Int. J. Computers & Math. with Applicat., Vol. 33,81–104, 1997.

12. Hyman, J. M. and M. Shashkov, "The adjoint operators for the natural discretizations for the divergence, gradient, and curl on logically rectangular grids," IMACS J. Appl. Num. Math., Vol. 25, 413-442, 1997.
doi:10.1016/S0168-9274(97)00097-4

13. Hyman, J. M. and M. Shashkov, "The orthogonal decomposition theorems for mimetic finite difference methods," SIAM J. Numer. Anal., Vol. 36, 788-818, 1999.
doi:10.1137/S0036142996314044

14. Hyman, J. M. and M. Shashkov, "The approximation of boundary conditions for mimetic finite difference methods," Int. J. Computers & Math. with Applicat., Vol. 36, 79-99, 1998.
doi:10.1016/S0898-1221(98)00152-7

15. Hyman, J. M. and M. Shashkov, "Mimetic discretizations for Maxwell’s equations and equations of magnetic diffusion,", Report LA-UR-98-1032 (http://cnls.lanl.gov/∼shashkov) of Los Alamos National Laboratory, Los Alamos, New Mexico, USA.
doi:10.1016/S0898-1221(98)00152-7

16. Hyman, J. M. and M. Shashkov, "Mimetic discretizations for Maxwell’s equations," J. Comput. Phys., Vol. 151, 881-909, 1999.
doi:10.1006/jcph.1999.6225

17. Hyman, J. M., M. Shashkov, and S. Steinberg, "The numerical solution of diffusion problems in strongly heterogeneous nonisotropic materials," J. Comput. Phys., Vol. 132, 130-148, 1997.
doi:10.1006/jcph.1996.5633

18. Jin, J., The Finite Element Method in Electromagnetics, John Wiley & Sons, Inc., New York, 1993.

19. Lee, R. L. and N. K. Madsen, "A mixed finite element formulation for Maxwell’s equations in the time domain," J. Comput. Phys., Vol. 88, 284-304, 1990.
doi:10.1016/0021-9991(90)90181-Y

20. Monk, P., "A comparison of three mixed methods for the timedependent Maxwell’s equations," SIAM J. Sci. Stat. Comput., Vol. 13, 1097-1122, 1992.
doi:10.1137/0913064

21. Monk, P., "Analysis of finite element method for Maxwell’s equations," SIAM J. Num. Analysis, Vol. 29, 714-729, 1992.
doi:10.1137/0729045

22. Monk, P., "An analysis of Nedelec’s method for the spatial discretization of Maxwell’s equations," J. Comp. Appl. Math., Vol. 47, 101-121, 1993.
doi:10.1016/0377-0427(93)90093-Q

23. Morel, J. E., R. M. Roberts, and M. Shashkov, "A local supportoperators diffusion discretization scheme for quadrilateral r-z meshes," J. Comput. Phys., Vol. 144, 17-51, 1998.
doi:10.1006/jcph.1998.5981

24. Raviart, P. A. and J. M. Thomas, "A mixed finite element method for 2-nd order elliptic Problems," Mathematical Aspects of Finite Element Methods, I. Galligani and E. Magenes (eds.), 292–315, Springer-Verlag, 1977.

25. Reitz, J. R., F. J. Milford, and R. W. Christy, Foundations of Electromagnetic Theory, Third Edition, Chapters 16–18, 1980.

26. Samarskii, A. A., V. F. Tishkin, A. P. Favorskii, and M. Yu. Shashkov, "Operational finite-difference schemes," Diff. Eqns., Vol. 17, 854-862, 1981.

27. Schuhmann, R. and T. Weiland, "Stability of the FDTD algorithm on nonorthogonal grids related to the spatial interpolation scheme," IEEE Trans. Magn., Vol. 34, 2751-2754, 1998.
doi:10.1109/20.717639

28. Shashkov, M., Conservative Finite-Difference Schemes on General Grids, CRC Press, Boca Raton, Florida, 1995.

29. Shashkov, M. and S. Steinberg, "Support-operator finitedifference algorithms for general elliptic problems," J. Comput. Phys., Vol. 118, 131-151, 1995.
doi:10.1006/jcph.1995.1085

30. Shashkov, M. and S. Steinberg, "Solving diffusion equations with rough coefficients in rough grids," J. Comput. Phys., Vol. 129, 383-405, 1996.
doi:10.1006/jcph.1996.0257

31., Finite Elements for Wave Electromagnetics. Methods and Techniques, P. P. Silvester and G. Pelosi (eds.), IEEE Press, New York, 1994.

32. Shercliff, J. A., A Textbook of Magnetohydrodynamics, 24, Pergamon Press, Oxford, 1965.

33. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," J. Math. Phys., Vol. 40, 169-187, 1999.
doi:10.1063/1.532767

34. Taflove, A., Computational Electrodynamics. The Finite- Difference Time-Domain Method, Artech House, Inc., Boston, 1995.

35. Weiland, T., "Time domain electromagnetic field computation with finite difference methods," Int. J. Num. Model., Vol. 9, 295-319, 1996.
doi:10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8

36. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693