1. Adam, A. C., A. G. Serveniere, J. C. Nedelec, and P. A. Raviart, "Study of an implicit scheme for integrating Maxwell’s equations," Comput. Meth. Appl. Mech. Eng., Vol. 22, 327-346, 1980.
doi:10.1016/0045-7825(80)90004-3 Google Scholar
2. Ardelyan, N. V., "The Convergence of difference schemes for two-dimensional equations of acoustics and Maxwell’s equations," USSR Comput. Math. and Math. Phys., Vol. 23, 93-99, 1983.
doi:10.1016/S0041-5553(83)80162-1 Google Scholar
3. Bossavit, A., Computational Electromagnetism. Variational Formulations, Complementarity, Edge Elements, Academic Press, 1998.
4. Cai, Z., J. E. Jones, S. F. McCormick, and T. F. Russell, "Controlvolume mixed finite element methods," Comput. Geosci., Vol. 1, 289-315, 1997.
doi:10.1023/A:1011577530905 Google Scholar
5. Chew, W. C., "Electromagnetic theory on a lattice," J. Appl. Phys., Vol. 75, 4843-4850, 1994.
doi:10.1063/1.355770 Google Scholar
6. Denisov, A. A., A. V. Koldoba, and Yu. A. Poveshchenko, "The convergence to generalized solutions of difference schemes of the reference-operator method for Poisson’s equation," USSR Comput. Math. and Math. Phys., Vol. 29, 32-38, 1989.
doi:10.1016/0041-5553(89)90005-0 Google Scholar
7. Dmitrieva, M. V., A. A. Ivanov, V. F. Tishkin, and A. P. Favorskii, "Construction and investigation of support-operators finitedifference schemes for Maxwell equations in cylindrical geometry," USSR Ac. of Sc., Vol. 27, Preprint Keldysh Inst. of Appl. Math., 1985 (in Russian). Google Scholar
8. Girault, V., "Theory of a finite difference methods on irregular networks," SIAM J. Numer. Anal., Vol. 11, 260-282, 1974.
doi:10.1137/0711026 Google Scholar
9. Gustafsson, B., H.-O. Kreiss, and J. Oliger, Time Dependent Problems and Difference Methods, Vol. 11, 445-495, Wiley-Interscience Publication, John Wiley & Sons, Inc., 1995.
10. Hyman, J. M., S. Li, P. Knupp, and M. Shashkov, "An algorithm to align a quadrilateral grid with internal boundaries," J. Comp. Phys., Vol. 163, 133-149, 2000.
doi:10.1006/jcph.2000.6560 Google Scholar
11. Hyman, J. M. and M. Shashkov, "Natural discretizations for the divergence, gradient, and curl on logically rectangular grids," Int. J. Computers & Math. with Applicat., Vol. 33,81–104, 1997. Google Scholar
12. Hyman, J. M. and M. Shashkov, "The adjoint operators for the natural discretizations for the divergence, gradient, and curl on logically rectangular grids," IMACS J. Appl. Num. Math., Vol. 25, 413-442, 1997.
doi:10.1016/S0168-9274(97)00097-4 Google Scholar
13. Hyman, J. M. and M. Shashkov, "The orthogonal decomposition theorems for mimetic finite difference methods," SIAM J. Numer. Anal., Vol. 36, 788-818, 1999.
doi:10.1137/S0036142996314044 Google Scholar
14. Hyman, J. M. and M. Shashkov, "The approximation of boundary conditions for mimetic finite difference methods," Int. J. Computers & Math. with Applicat., Vol. 36, 79-99, 1998.
doi:10.1016/S0898-1221(98)00152-7 Google Scholar
15. Hyman, J. M. and M. Shashkov, "Mimetic discretizations for Maxwell’s equations and equations of magnetic diffusion,", Report LA-UR-98-1032 (http://cnls.lanl.gov/∼shashkov) of Los Alamos National Laboratory, Los Alamos, New Mexico, USA.
doi:10.1016/S0898-1221(98)00152-7 Google Scholar
16. Hyman, J. M. and M. Shashkov, "Mimetic discretizations for Maxwell’s equations," J. Comput. Phys., Vol. 151, 881-909, 1999.
doi:10.1006/jcph.1999.6225 Google Scholar
17. Hyman, J. M., M. Shashkov, and S. Steinberg, "The numerical solution of diffusion problems in strongly heterogeneous nonisotropic materials," J. Comput. Phys., Vol. 132, 130-148, 1997.
doi:10.1006/jcph.1996.5633 Google Scholar
18. Jin, J., The Finite Element Method in Electromagnetics, John Wiley & Sons, Inc., New York, 1993.
19. Lee, R. L. and N. K. Madsen, "A mixed finite element formulation for Maxwell’s equations in the time domain," J. Comput. Phys., Vol. 88, 284-304, 1990.
doi:10.1016/0021-9991(90)90181-Y Google Scholar
20. Monk, P., "A comparison of three mixed methods for the timedependent Maxwell’s equations," SIAM J. Sci. Stat. Comput., Vol. 13, 1097-1122, 1992.
doi:10.1137/0913064 Google Scholar
21. Monk, P., "Analysis of finite element method for Maxwell’s equations," SIAM J. Num. Analysis, Vol. 29, 714-729, 1992.
doi:10.1137/0729045 Google Scholar
22. Monk, P., "An analysis of Nedelec’s method for the spatial discretization of Maxwell’s equations," J. Comp. Appl. Math., Vol. 47, 101-121, 1993.
doi:10.1016/0377-0427(93)90093-Q Google Scholar
23. Morel, J. E., R. M. Roberts, and M. Shashkov, "A local supportoperators diffusion discretization scheme for quadrilateral r-z meshes," J. Comput. Phys., Vol. 144, 17-51, 1998.
doi:10.1006/jcph.1998.5981 Google Scholar
24. Raviart, P. A. and J. M. Thomas, "A mixed finite element method for 2-nd order elliptic Problems," Mathematical Aspects of Finite Element Methods, I. Galligani and E. Magenes (eds.), 292–315, Springer-Verlag, 1977. Google Scholar
25. Reitz, J. R., F. J. Milford, and R. W. Christy, Foundations of Electromagnetic Theory, Third Edition, Chapters 16–18, 1980.
26. Samarskii, A. A., V. F. Tishkin, A. P. Favorskii, and M. Yu. Shashkov, "Operational finite-difference schemes," Diff. Eqns., Vol. 17, 854-862, 1981. Google Scholar
27. Schuhmann, R. and T. Weiland, "Stability of the FDTD algorithm on nonorthogonal grids related to the spatial interpolation scheme," IEEE Trans. Magn., Vol. 34, 2751-2754, 1998.
doi:10.1109/20.717639 Google Scholar
28. Shashkov, M., Conservative Finite-Difference Schemes on General Grids, CRC Press, Boca Raton, Florida, 1995.
29. Shashkov, M. and S. Steinberg, "Support-operator finitedifference algorithms for general elliptic problems," J. Comput. Phys., Vol. 118, 131-151, 1995.
doi:10.1006/jcph.1995.1085 Google Scholar
30. Shashkov, M. and S. Steinberg, "Solving diffusion equations with rough coefficients in rough grids," J. Comput. Phys., Vol. 129, 383-405, 1996.
doi:10.1006/jcph.1996.0257 Google Scholar
31. Finite Elements for Wave Electromagnetics. Methods and Techniques, P. P. Silvester and G. Pelosi (eds.), IEEE Press, New York, 1994.
32. Shercliff, J. A., A Textbook of Magnetohydrodynamics, 24, Pergamon Press, Oxford, 1965.
33. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," J. Math. Phys., Vol. 40, 169-187, 1999.
doi:10.1063/1.532767 Google Scholar
34. Taflove, A., Computational Electrodynamics. The Finite- Difference Time-Domain Method, Artech House, Inc., Boston, 1995.
35. Weiland, T., "Time domain electromagnetic field computation with finite difference methods," Int. J. Num. Model., Vol. 9, 295-319, 1996.
doi:10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8 Google Scholar
36. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar