1. Adkins, W. A. and S. H. Weintraub, Algebra: An Approach via Module Theory, 307-327, Springer-Verlag, New York, 1992.
2. Armstrong, M., Basic Topology, Springer-Verlag, New York, 1983.
doi:10.1007/978-1-4757-1793-8
3. Balabanian, N. and T. A. Bickart, Electrical Network Theory, 80, John Wiley and Sons, New York, 1969.
4. Bamberg, P. and S. Sternberg, A Course in Mathematics for Students of Physics: 2, Ch. 12, Cambridge U. Press, NY, 1990.
5. Bossavit, A., A. Vourdas, and K. J. Binns, "Magnetostatics with scalar potentials in multiply connected regions," IEE Proc. A, Vol. 136, 260-261, 1989. Google Scholar
6. Bott, R. and L. W. Tu, Differential Forms in Algebraic Topology, 40-42, 51, 234, 258, 240, Springer-Verlag, New York, 1982.
doi:10.1007/978-1-4757-3951-0
7. Brown, M. L., "Scalar potentials in multiply connected regions," Int. J. Numer. Meth. Eng., Vol. 20, 665-680, 1984.
doi:10.1002/nme.1620200406 Google Scholar
8. Cohen, H., A Course in Computational Algebraic Number Theory, Springer-Verlag, New York, 1993.
doi:10.1007/978-3-662-02945-9
9. Coleman, T. F., A. Edenbrandt, and J. R. Gilbert, "Predicting fill for sparse orthogonal factorization," Journal of the Association for Computing Machinery, Vol. 33, 517-532, 1986.
doi:10.1145/5925.5932 Google Scholar
10. Croom, F. H., Basic Concepts of Algebraic Topology, Chaps. 2, 7.3, 4.5, Springer-Verlag, New York, 1978.
doi:10.1007/978-1-4684-9475-4
11. Deschamps, G. A., "Electromagnetics and differential forms," IEEE Proc., Vol. 69, 676-696, 1981.
doi:10.1109/PROC.1981.12048 Google Scholar
12. Greenberg, M. J. and J. R. Harper, Algebraic Topology, 235, 63–66 Benjamin/Cummings, Reading, MA, 1981.
13. Gross, P. W., "The commutator subgroup of the first homotopy group and cuts for scalar potentials in multiply connected regions,", Master’s thesis, Dept. of Biomed. Eng., Boston U., September 1993. Google Scholar
14. Gross, P. W. and P. R. Kotiuga, "Data structures for geometric and topological aspects of finite element algorithms,", this volume. Google Scholar
15. Gross, P. W. and P. R. Kotiuga, "A challenge for magnetic scalar potential formulations of 3-d eddy current problems: Multiply connected cuts in multiply connected regions which necessarily leave the cut complement multiply connected," Electric and Magnetic Fields: From Numerical Models to Industrial Applications, A. Nicolet and R. Belmans (eds.), Plenum, 1–20, New York, 1995. Proc. of the Second Int. Workshop on Electric and Magnetic Fields. Google Scholar
16. Guillemin, V. and A. Pollack, Differential Topology, 21, Prentice- Hall, Englewood Cliffs, New Jersey, 1974.
17. Gunning, R. C. and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N.J., 1965.
18. Harrold, C. S. and J. Simkin, "Cutting multiply connected domains," IEEE Trans. Magn., Vol. 21, 2495-2498, 1985.
doi:10.1109/TMAG.1985.1064142 Google Scholar
19. Kotiuga, P. R., "Hodge decompositions and computational electromagnetics,", Ph.D. thesis, McGill University, Montreal, 1984. Google Scholar
20. Kotiuga, P. R., "On making cuts for magnetic scalar potentials in multiply connected regions," J. Appl. Phys., Vol. 61, 3916-3918, 1987.
doi:10.1063/1.338583 Google Scholar
21. Kotiuga, P. R., "An algorithm to make cuts for scalar potentials in tetrahedral meshes based on the finite element method," IEEE Trans. Magn., Vol. 25, 4129-4131, 1989.
doi:10.1109/20.42544 Google Scholar
22. Kotiuga, P. R., "Topological considerations in coupling scalar potentials to stream functions describing surface currents," IEEE Trans. Magn., Vol. 25, 2925-2927, 1989.
doi:10.1109/20.34326 Google Scholar
23. Kotiuga, P. R., "Analysis of finite-element matrices arising from discretizations of helicity functionals," J. Appl. Phys., Vol. 67, 5815-5817, 1990.
doi:10.1063/1.345973 Google Scholar
24. Kotiuga, P. R., "Topological duality in three-dimensional eddycurrent problems and its role in computer-aided problem formulation," J. Appl. Phys., Vol. 67, 4717-4719, 1990.
doi:10.1063/1.344812 Google Scholar
25. Kotiuga, P. R., "Essential arithmetic for evaluating three dimensional vector finite element interpolation schemes," IEEE Trans. Magn., Vol. 27, 5208-5210, 1991.
doi:10.1109/20.278789 Google Scholar
26. Kotiuga, P. R., A. Vourdas, and K. J. Binns, "Magnetostatics with scalar potentials in multiply connected regions," IEE Proc. A, Vol. 137, 231-232, 1990. Google Scholar
27. Maxwell, J. C., A Treatise on Electricity and Magnetism (1891), Chap. 1, Art. 18–22, Dover, New York, 1954.
28. Munkres, J. R., Elements of Algebraic Topology, 377-380, Addison-Wesley, Reading, MA, 1984.
29. Murphy, A., "Implementation of a finite element based algorithm to make cuts for magnetic scalar potentials,", Master’s thesis, Dept. of ECS Eng., Boston U., 1991. Google Scholar
30. Pothen, A. and C.-J. Fan, "Computing the block triangular form of a sparse matrix," ACM Transactions on Mathematical Software, Vol. 16, 303-324, 1990.
doi:10.1145/98267.98287 Google Scholar
31. Ren, Z. and A. Razek, "Boundary edge elements and spanning tree technique in three-dimensional electromagnetic field computation," Int. J. Num. Meth. Eng., Vol. 36, 2877-2893, 1993.
doi:10.1002/nme.1620361703 Google Scholar
32. Rotman, J. J., An Introduction to Algebraic Topology, Springer- Verlag, NY, 1988.
doi:10.1007/978-1-4612-4576-6
33. Saitoh, I., "Perturbed H-method without the Lagrange multiplier for three dimensional nonlinear magnetostatic problems," IEEE Trans. Magn., Vol. 30, 4302-4304, 1994.
doi:10.1109/20.334068 Google Scholar
34. Silvester, P. and R. Ferrari, Finite Elements for Electrical Engineers, 2nd Edition, Cambridge U. Press, NY, 1990.
35. Stillwell, J., Classical Topology and Combinatorial Group Theory, Second Edition, Ch. 3,4, Springer-Verlag, NY, 1993.
doi:10.1007/978-1-4612-4372-4
36. Thurston, W. P., Three-Dimensional Geometry and Topology, Princeton University Press, Princeton, New Jersey, 1997.
doi:10.1515/9781400865321
37. Vourdas, A., K. J. Binns, and , "Magnetostatics with scalar potentials in multiply connected regions," IEE Proc. A, Vol. 136, 49-54, 1989. Google Scholar