Vol. 32
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Implementing the Perfectly Matched Layer Absorbing Boundary Condition with Mimetic Differencing Schemes
By
, Vol. 32, 383-411, 2001
Abstract
This paper concerns the implementation of the perfectly matched layer (PML) absorbing boundary condition in the framework of a mimetic differencing scheme for Maxwell's Equations. We use mimetic versions of the discrete curl operator on irregular logically rectangular grids to implement anisotropic tensor formulation of the PML. The form of the tensor we use is fixed with respect to the grid and is known to be perfectly matched in the continuous limit for orthogonal coordinate systems in which the metric is constant, i.e. Cartesian coordinates, and quasi-perfectly matched (quasi-PML) for curvilinear coordinates. Examples illustrating the effectiveness and long-term stability of the methods are presented. These examples demonstrate that the grid-based coordinate implementation of the PML is effective on Cartesian grids, but generates systematic reflections on grids which are orthogonal but non-Cartesian (quasi-PML). On non-orthogonal grids progressively worse performance of the PML is demonstrated. The paper begins with a summary derivation of the anisotropic formulation of the perfectly matched layer and mimetic differencing schemes for irregular logically rectangular grids.
Citation
M. W. Buksas , "Implementing the Perfectly Matched Layer Absorbing Boundary Condition with Mimetic Differencing Schemes," , Vol. 32, 383-411, 2001.
doi:10.2528/PIER00080115
http://www.jpier.org/PIER/pier.php?paper=00080115
References

1. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, New York, 1989.

2. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, 185-200, October 1994.
doi:10.1006/jcph.1994.1159

3. Gedney, S. D., "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 12, 1630-1639, December 1996.
doi:10.1109/8.546249

4. Gedney, S. D., "An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media," Electromagnetics, Vol. 16, 399-415, 1996.
doi:10.1080/02726349608908487

5. He, J.-Q. and Q. H. Liu, "A nonuniform cylindrical FDTD algorithm with improved PML and quasi-PML absorbing boundary conditions," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 2, 1066-1072, March 1999.
doi:10.1109/36.752224

6. Hyman, J., M. Shashkov, and S. Stienberg, "The numerical solution of diffusion problems in strongly heterogeneous nonisotropic materials," Journal of Compuational Physics, Vol. 132, 130-148, 1997.
doi:10.1006/jcph.1996.5633

7. Hyman, J. M. and M. Shashkov, "Adjoint operators for the natural discretizations of the divergence, gradient and curl on logically rectangular grids," Applied Numerical Mathematics, Vol. 25, 413-442, 1997.
doi:10.1016/S0168-9274(97)00097-4

8. Hyman, J. M. and M. Shashkov, "Natural discretizations for the divergence, gradient and curl on logically rectangular grids," Applied Numerical Mathematics, Vol. 33, No. 4, 81-104, 1997.

9. Hyman, J. M. and M. Shashkov, "Mimetic discretizations for Maxwell’s equations," Journal of Compuational Physics, Vol. 151, 881-909, 1999.
doi:10.1006/jcph.1999.6225

10. Jackson, J. D., Classical Electrodynamics, 2nd edition, John Wiley & Sons, New York, 1975.

11. Mittra, R. and U. Pekel, "A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves," IEEE Microwave and Guided Wave Letters, Vol. 5, No. 3, 84-86, March 1995.
doi:10.1109/75.366461

12. Sacks, Z. S., D. M. Kingsland, R. Lee, and J.-F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 12, 1460-1463, December 1995.
doi:10.1109/8.477075

13. Taflove, A. (ed.), Advances in Computational Electrodynamics. The finite-difference time-domain method, Artech House, Boston, Mass., 1998.

14. Teixeira, F. L. and W. C. Chew, "Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates," IEEE Microwave and Guided Wave Letters, Vol. 7, No. 11, 371-373, November 1997.
doi:10.1109/75.641424

15. Teixeira, F. L. and W. C. Chew, "A general approach to extend Berenger’s absorbing boundary condition to anisotropic and dispersive media," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 9, 1386-1387, September 1998.
doi:10.1109/8.719984

16. Teixeira, F. L. and W. C. Chew, "PML-FDTD in cylindrical and spherical grids," IEEE Microwave and Guided Wave Letters, Vol. 7, No. 9, 285-287, September 1997.
doi:10.1109/75.622542

17. Tong, M.-S., Y. Chen, M. Kuzuoglu, and R. Mittra, "A new anisotropic perfectly matched layer medium for mesh truncation in finite difference time domain analysis," Int. J. Electronics, Vol. 86, No. 9, 1085-1091, 1999.
doi:10.1080/002072199132860

18. Yang, B. and P. G. Petropoulos, "Plane-wave analysis and comparison of split-field, biaxial and uniaxial PML methods as ABC’s for pseudospectral electromagnetic wave simulations in curvilinear coordinates," Journal of Computational Physics, Vol. 146, 747-774, 1998.
doi:10.1006/jcph.1998.6082

19. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.