Vol. 37
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Two-Scale Polarimetric Emissivity Model: Efficiency Improvements and Comparisons with Data
By
, Vol. 37, 205-219, 2002
Abstract
The two-scale model provides a framework for explaining the polarization and angular dependence of the microwave radiation emitted from the ocean surface. In this model the surface is viewed as a collection of randomly oriented facets. The emissivity of each facet is calculated using the small perturbation method (SPM), and that of the entire surface is obtained by integrating the local emissivity over all possible surface slopes, weighted by the probability of encountering these slopes. Since each SPM calculation involves a double integral, the model requires in principle the evaluation of a fourdimensional integral. This paper explores two methods for reducing the computational time required by the two-scale model. In one version, the azimuthal dependence of the local emissivity is represented by a truncated Fourier series and slope integral is computed numerically. In the second version the slope integral is carried out analytically, after expanding the integrand as a Taylor series in the surface slope. Hydrodynamic modulation effects are included in order to explain the upwind-downwind asymmetry of the emissivity. The calculated emissivities from the two versions of the model are compared with each other and with airborne and spaceborne measurements.
Citation
David Lyzenga John F. Vesecky , "Two-Scale Polarimetric Emissivity Model: Efficiency Improvements and Comparisons with Data," , Vol. 37, 205-219, 2002.
doi:10.2528/PIER02101000
http://www.jpier.org/PIER/pier.php?paper=021010
References

1. Stogryn, A., "The apparent temperature of the sea at microwave frequencies," IEEE Trans. Antennas Propagat., Vol. 15, No. 2, 278-286, March 1967.
doi:10.1109/TAP.1967.1138900

2. Gasiewski, A. J. and D. B. Kunkee, "Polarized microwave emission from water waves," Radio Sci., Vol. 29, No. 6, 1449-1466, Nov.–Dec. 1994.
doi:10.1029/94RS01923

3. Kunkee, D. B. and A. J. Gasiewski, "Simulation of passive microwave wind direction signatures over the ocean using an asymmetric-wave geometric optics model," Radio Sci., Vol. 32, No. 1, 59-78, Jan.–Feb. 1997.
doi:10.1029/96RS02434

4. Camps, A. J. and S. C. Reising, "Wind direction azimuthal signature in the Stokes emission vector from the ocean surface at microwave frequencies," Microwave and Optical Technology Letters, Vol. 29, No. 6, 426-432, June 2001.
doi:10.1002/mop.1198

5. Yueh, S. H., "Modeling of wind direction signals in polarimetric sea surface brightness temperatures," IEEE Trans. Geosci. Remote Sensing, Vol. 35, No. 6, 1400-1418, Nov. 1997.
doi:10.1109/36.649793

6. Yueh, S. H., R. Kwok, F. K. Li, S. V. Nghiem, and W. J. Wilson, "Polarimetric passive remote sensing of ocean wind vectors," Radio Sci., Vol. 29, No. 4, 799-814, Jul.–Aug. 1994.
doi:10.1029/94RS00450

7. Durden, S. P. and J. F. Vesecky, "A physical radar cross-section model for a wind-driven sea with swell," IEEE J. Oceanic Eng., Vol. 10, 445-451, Oct. 1985.
doi:10.1109/JOE.1985.1145133

8. Yueh, S. H., W. J. Wilson, S. J. Dinardo, and F. K. Li, "Polarimetric microwave brightness signatures of ocean wind directions," IEEE Trans. Geosci. Remote Sensing, Vol. 37, No. 2, 949-959, Mar. 1999.
doi:10.1109/36.752213

9. Wick, G. A., J. J. Bates, and C. C. Gottschall, "Observational evidence of a wind direction signal in SSM/I passive microwave data," IEEE Trans. Geosci. Remote Sensing, Vol. 38, No. 2, 823-837, Mar. 2000.
doi:10.1109/36.842011

10. Piepmeier, J. R. and A. J. Gasiewski, "High-resolution passive polarimetric microwave mapping of ocean surface wind vector fields," IEEE Trans. Geosci. Remote Sensing, Vol. 39, No. 3, 606-622, Mar. 2001.
doi:10.1109/36.911118

11. Cox, C. and W. Munk, "Measurement of the roughness of the sea surface from photographs of the sun’s glitter," J. Optical Soc. Am., Vol. 44, No. 11, 838-850, Nov. 1954.
doi:10.1364/JOSA.44.000838

12. Donnelly, W. J., J. R. Carswell, R. E. McIntosh, P. S. Chang, J. Wilkerson, F. Marks, and P. G. Black, "Revised ocean backscatter models at C and Ku band under high-wind conditions," J. Geophys. Res., Vol. 104, No. C5, 11485-11497, May 1999.
doi:10.1029/1998JC900030

13. Wentz, F. J., "Measurement of oceanic wind vector using satellite microwave radiometers," IEEE Trans. Geosci. Remote Sensing, Vol. 30, No. 5, 960-972, Sep. 1992.
doi:10.1109/36.175331