1. Golik, W. L., "Sparsity and conditioning of impedance matrices obtained with semi-orthogonal and bi-orthogonal wavelet bases," IEEE Trans. Antennas Propagat., Vol. 48, No. 4, 473-481, 2000.
doi:10.1109/8.843660 Google Scholar
2. Rokhlin, V., "Diagonal forms of translation operators for the Helmholtz equation in three dimensions," Al Comput. Harmonic Anal., Vol. 1, 82-93, 1993.
doi:10.1006/acha.1993.1006 Google Scholar
3. Canning, F. X., "Sparse approximations for solving integral equations with oscillatory kernels," SIAM J. Sci. Statist. Comput., Vol. 13, No. 1, 71-87, 1992.
doi:10.1137/0913004 Google Scholar
4. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "Fast integral-equation solver for electromagnetic scattering problems," 10th Annu. Rev. Progress Appl. Computat. Electromagn., 1994. Google Scholar
5. Steinberg, B. Z. and Y. Leviatan, "On the use of wavelet expansion in the method of moment," IEEE Trans. Antennas Propagat., Vol. 41, No. 5, 610-619, 1993.
doi:10.1109/8.222280 Google Scholar
6. Kim, H. and H. Ling, "On the application of fast wavelet transform to the integral equation solution of electromagnetic scattering problems," Microwave Opt. Technol. Lett., Vol. 6, No. 3, 168-173, 1993. Google Scholar
7. Sabetfakhri, K. and L. P. B. Katehi, "Analysis of integrated millimeter-wave and sub-millimeter-wave waveguides using orthonormal wavelet expansion," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 12, 2412-2422, 1994.
doi:10.1109/22.339775 Google Scholar
8. Wagner, R. L. and W. C. Chew, "A study of wavelets for the solution of electromagnetic integral equations," IEEE Trans. Antennas Propagat., Vol. 43, No. 8, 802-805, 1995.
doi:10.1109/8.402199 Google Scholar
9. Xiang, Z. and Y. Lu, "An effective wavelet matrix transform approach for efficient solutions of electromagnetic integral equations," IEEE Trans. Antennas Propagat., Vol. 45, No. 8, 1205-1213, 1997.
doi:10.1109/8.611238 Google Scholar
10. Ning, G., K. Yashiro, and S. Ohkawa, "Wavelet matrix transform approach for the solution of electromagnetic integral equations," Proc. IEEE Int. Antennas Propagat. Symp., Vol. 1, No. 7, 364-367, 1999. Google Scholar
11. Quan, W. and I. R. Ciric, "On the semi-orthogonal wavelet matrix transform approach for the solution of integral equations," Proc. IEEE Int. Antennas Propagat. Symp., Vol. 1, No. 7, 360-363, 1999. Google Scholar
12. Waller, M. L. and S. M. Rao, "Application of adaptive basis functions for a diagonal moment matrix solution of arbitrarily shaped three-dimensional conducting body problems," IEEE Trans. Antennas Propagat., Vol. 50, No. 10, 1445-1452, 2002.
doi:10.1109/TAP.2002.802095 Google Scholar
13. Daubechies, I., "Orthonormal bases of compactly supported wavelets," Comm. Pure Appl. Math., Vol. 41, 909-996, 1988. Google Scholar
14. Guan, N., K. Yashiro, and S. Ohkawa, "On a choice of wavelet bases in the wavelet transform approach," IEEE Trans. Antennas Propagat., Vol. 48, No. 8, 2000. Google Scholar
15. Yu, J. and A. A. Kishk, "Use of wavelets transform to the method of moment matrix arising from electromagnetic scattering problems of 2D ob jects due to oblique plane wave incidence," Microwave and Optical Technology Letters, Vol. 34, No. 2, 130-134, 2002.
doi:10.1002/mop.10394 Google Scholar
16. Yu, J. and A. A. Kishk, "Extension of impedance matrix compression method with wavelet transform for 2-D conducting and dielectric scattering ob jects due to oblique plane wave incidence," Microwave and Optical Technology Letters, Vol. 34, No. 1, 53-56, 2002.
doi:10.1002/mop.10371 Google Scholar
17. Sleijpe, G. and D. Fokkema, "Bi-CGSTAB(l) for linear equations involving unsymmetric matrices with complex spectrum," ETNA, Vol. 1, 11-32, 1993. Google Scholar
18. Deng, H. and H. Ling, "On a class of predefined wavelet packet bases for efficient representation of electromagnetic integral equations," IEEE Trans. Antennas Propagat., Vol. 47, No. 12, 1772-1779, 1999.
doi:10.1109/8.817652 Google Scholar
19. Van der Vorst, H. A., "Bi-CGSTAB: A fast and smoothly converging variant of bi-cg for the solution of nonsymmetric systems," SIAM J. Sci. Statist. Comput., Vol. 12, No. 3, 631-644, 1992.
doi:10.1137/0913035 Google Scholar
20. Gutknecht, M. H., "Variants of Bi-CGSTAB for matrices with complex spectrum," SIAM J. Sci. Statist. Comput., Vol. 14, 1020-1033, 1993.
doi:10.1137/0914062 Google Scholar
21. SAAD, Y., Iterative Methods for Sparse Linear Systems, PWS Publishing Company, 1996.