1. Gupta, S., A. Bhattacharyya, and A. Chakraborty, "Analysis of an open-ended waveguide radiator with dielectric plug," IEE Proc. -Microw. Antennas Propag., Vol. 144, No. 2, 126-130, 1997.
doi:10.1049/ip-map:19971016 Google Scholar
2. Swift, C. T. and D. M. Hatcher, "The input admittance of a rectangular aperture antenna loaded with a dielectric plug," NASA Tech. Note TN-D-4430, No. 4, 1968. Google Scholar
3. Swift, C. T., "Admittance of a waveguide-fed aperture loaded with dielectric plug," IEEE Trans. on Antennas and Propagation, Vol. 17, No. 3, 356-359, 1969.
doi:10.1109/TAP.1969.1139456 Google Scholar
4. Katrich, A. V., N. A. Dumin, and A. O. Dumina, "Radiation of transient fields from the open end of rectangular waveguide," International Conference on Antenna Theory and Techniques, 9-12, 2003. Google Scholar
5. Das, S. and A. Chakrabarty, "Application of multiple cavity modeling technique for accurate analysis of waveguide fed thick rectangular window," ELECTRO, 3-5, 2005. Google Scholar
6. Das, S. and A. Chakrabarty, "Comparison of an open ended waveguide radiator performance with and without matching stub," International Conference on Antenna Technology, 23-25, 2005. Google Scholar
7. Encinar, J. A. and J. M. Rebollar, "Convergence of numerical solutions of open-ended waveguide by modal analysis and hybrid modal-spectral techniques," IEEE Trans. on Microwave Theory and Technique, Vol. MTT-34, No. 7, 809-814, 1986.
doi:10.1109/TMTT.1986.1133445 Google Scholar
8. Baudrand, H., J.-W. Tao, and J. Atechian, "Study of radiating properties of open-ended rectangular waveguides," IEEE Trans. on Antennas and Propagation, Vol. 36, No. 8, 1071-1077, 1988.
doi:10.1109/8.7219 Google Scholar
9. Zhongxiang, S. and R. H. MacPhie, "A simple method for calculating the reflection coefficient of open-ended waveguides," IEEE Trans. on Microwave Theory and Techniques, Vol. 45, No. 4, 546-548, 1997.
doi:10.1109/22.566636 Google Scholar
10. Cohen, M. H., T. H. Crowley, and C. A. Levis, "The aperture admittance of a rectangular waveguide radiating into half-space," Rep.339-22, 33-38, 1951. Google Scholar
11. Das, B. N., "Admittance of rectangular apertures," Journal of the Institute of Electronics and Telecommunication Engineers, Vol. 22, No. 3, 133-137, 1976. Google Scholar
12. MacPhie, R. H. and A. I. Zaghloul, "Radiation from a rectangular waveguide with infinite flange-exact solution by the correlation matrix method," IEEE Trans. on Antennas and Propagation, Vol. AP-28, No. 7, 497-503, 1980.
doi:10.1109/TAP.1980.1142376 Google Scholar
13. Gupta, S., "Electromagnetic field estimation in aperture and slot antennas with their equivalent network representation," Ph.D. Dissertation, 1996. Google Scholar
14. Eleftheriades, G. V., A. S. Omar, L. P. B. Katehi, and G. M. Rebeiz, "Some important properties of waveguide junction generalized scattering matrices in the context of the mode matching technique," IEEE Trans. of Microwave Theory and Techniques, Vol. 42, No. 10, 1896-1903, 1994.
doi:10.1109/22.320771 Google Scholar
15. Mongiardo, M., P. Russer, M. Dionigi, and L. B. Felsen, "Waveguide step discontinuities revisited by the generalized network formulation," Microwave Symposium Digest, 7-12, 1998. Google Scholar
16. Chen, C., K. Choi, H. K. Jung, and S. Y. Hahn, "Analysis of waveguide discontinuities in H-plane using finite element- boundary element technique," IEEE Trans. Of Magnetics, Vol. 30, No. 5, 3168-3171, 1994.
doi:10.1109/20.312610 Google Scholar
17. Lin, S. L., L. W. Li, T. S. Yeo, and M. S. Leong, "Novel unified mode matching analysis of concentric waveguide junctions," IEEE Trans. on Antennas and Propagation, Vol. 148, No. 6, 369-374, 2001. Google Scholar
18. Wexler, A., "Solution of waveguide discontinuities by modal analysis," IEEE Trans. Microw. Theory Tech., Vol. MTT-15, No. 9, 508-517, 1967.
doi:10.1109/TMTT.1967.1126521 Google Scholar
19. Levy, R., "Derivation of equivalent circuits of microwave structures using numerical techniques," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 9, 1688-1695, 1999.
doi:10.1109/22.788610 Google Scholar
20. Guglielmi, M. and C. Newport, "Rigorous, multimode equivalent network representation of inductive discontinuities," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 11, 1651-1659, 1990.
doi:10.1109/22.60012 Google Scholar
21. Palais, J. C., "A complete solution of the inductive iris with TE10 incidence in rectangular waveguide," IEEE Trans. of Microwave Theory and Techniques, Vol. 15, No. 3, 156-160, 1967.
doi:10.1109/TMTT.1967.1126405 Google Scholar
22. Rozzi, T. E., "Equivalent network for interacting thick inductive irises," IEEE Trans. on Antennas and Propagation, Vol. 20, No. 5, 323-330, 1972. Google Scholar
23. Rozzi, T. E., "The variational treatment of thick interacting inductive irises," IEEE Trans. on Antennas and Propagation, Vol. 21, No. 2, 82-88, 1973. Google Scholar
24. Collin, R. E., "Variational methods for waveguide discontinuities," Field Theory of Guided Waves, 1960. Google Scholar
25. Harrigton, R. F., "Deterministic problems," Field Computation by Method of Moments, 5-9, 1968. Google Scholar
26. Mittra, R., T. Itoh, and T.-S. Li, "Analytical and numerical studies of the relative convergence phenomenon arising in the solution of an integral equation by the moment method," IEEE Trans. Microw. Theory Tech., Vol. MTT-20, No. 2, 96-104, 1972.
doi:10.1109/TMTT.1972.1127691 Google Scholar
27. Harrigton, R. F, "Microwave network," Time Harmonic Electro- magnetic Fields, 389-391, 1961. Google Scholar
28. Chakrabarty, A., "Synthesis of phase function for a desired radi- ation pattern and fixed amplitude distribution," Ph.D. Disserta- tion, 1981. Google Scholar