Vol. 63
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-07-29
Minimizing Crosstalks in Unshielded Twisted-Pair Cables by Using Electromagnetic Topology Techniques
By
, Vol. 63, 125-140, 2006
Abstract
Crosstalk reduction is analyzed for a reconfigured category-five cable network using electromagnetic topology-based simulation. The reconfigured network results in a marked reduction in inductive near-end crosstalk for the unshielded twisted-pair cable network. Analyses show that half-loop shifting of the generator-pair wires placed next to the receptor is the most effective way to control the near-end crosstalk level. This is primarily due to additional coupling sources induced on receptor wires that effectively deactivate the original cross coupling effect. The analysis also reveals the usefulness of electromagnetic topology-based simulations. The technique applied in this paper is applicable for any large network systems. A sub-network compaction scheme is critical in creating the equivalent junctions that provide a significant reduction in total computational time and total computer memory requirement for analyzing large network systems. For a 5.28-m long cable we have considered in this paper, the results are valid up to 10 MHz.
Citation
Phumin Kirawanich, J. Wilson, Naz E. Islam, and Susumu Yakura, "Minimizing Crosstalks in Unshielded Twisted-Pair Cables by Using Electromagnetic Topology Techniques," , Vol. 63, 125-140, 2006.
doi:10.2528/PIER06042603
References

1. Celozzi, S. and M. Feliziani, "EMP-coupling to twisted-wire cables," IEEE Int. Symp. on EMC, 21-23, 1990.

2. Maki, M., et al. "Home information wiring system using UTP cable for IEEE 1394 and Ethernet systems," IEEE Trans. Consumer Electron., Vol. 47, No. 4, 921-927, 2001.
doi:10.1109/30.982809

3. Paul, C. R. and J. W. McKnight, "Prediction of crosstalk involving twisted-pairs of wires-part I: a transmission-line model for twistedwire pairs," IEEE Trans. Electromagn. Compat., Vol. EMC-21, No. 2, 92-105, 1979.

4. Paul, C. R. and J. W. McKnight, "Prediction of crosstalk involving twisted-pairs of wires-part II: a simplified lowfrequencyprediction model," IEEE Trans. Electromagn. Compat., Vol. EMC-21, No. 2, 105-114, 1979.

5. Piper, G. R. and A. PrataJr., "Magnetic ux densitypro duced byfinite-length twisted-wire pairs," IEEE Trans. Electromagn. Compat., Vol. 38, No. 1, 84-92, 1996.
doi:10.1109/15.485701

6. Taylor, C. D. and J. P. Castillo, "On the response of a terminated twisted-wire cable excited bya plane-wave electromagnetic field," IEEE Trans. Electromagn. Compat., Vol. EMC-22, No. 1, 16-19, 1980.

7. IEEE 802.3 Working Group, IEEE Standard 802.3u 1995Ed., (Supplement to ISO/IEC 8802-3: 1993; ANSI/IEEE Std 802.3,1993 Ed.).

8. Parmantier, J. P. and P. Degauque, "Topologybased modeling of verylarge systems," Modern Radio Sci., 151-177, 1996.

9. Baum, C. E., "Electromagnetic topology: a formal approach to the analysis and design of complex electronic systems," Interaction Notes, 1980.

10. Parmantier, J. P. and J. P. Aparicio, "Electromagnetic topology: coupling of two wires through an aperture," Int. Zurich EMC Symp., 12-14, 1991.

11. Baum, C. E., "The theoryof the electromagnetic interference control," Interaction Notes, 1989.

12. Kirawanich, P., N. E. Islam, and S. J. Yakura, "An electromagnetic topological approach: crosstalk characterization of the unshielded twisted-pair cable," Progress In Electromagnetics Research, Vol. 58, 285-299, 2006.
doi:10.2528/PIER05091901

13. Eswarappa, C., G. I. Costache, and W. J. R. Hoefer, "Transmission line matrix modeling of disperse wide-band absorbing boundaries with time-domain diakoptics for Sparameter extraction," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 4, 379-386, 1990.
doi:10.1109/22.52578