Vol. 66
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-11-30
Crankled S-Ring Resonator with Small Electrical Size
By
Progress In Electromagnetics Research, Vol. 66, 179-190, 2006
Abstract
Metamaterials with small electrical size are more feasible to be described by the macroscopic parameters and treated as an effective homogenous media. By using geometric optimization, we experimentally realize a metamaterial composed of crankled S-ring resonator,whose electrical size is 2.5 times smaller than the conventional S-ring resonator. The overall effective capacitance of the unit structure is greatly increased when viewed from an equivalent circuit model point of view,so the resonant frequency is decreased, and the metamaterial works at a much longer wavelength regime. In addition,w e summarize two kinds of other methods that could be used to reduce the electrical size of the structures. Experimental and simulation results are presented,sho wing the effectiveness of these methods in the metamaterial homogenization.
Citation
Hongsheng Chen, Li-Xin Ran, Bae-Ian Wu, Jin Au Kong, and Tomasz M. Grzegorczyk, "Crankled S-Ring Resonator with Small Electrical Size," Progress In Electromagnetics Research, Vol. 66, 179-190, 2006.
doi:10.2528/PIER06112003
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of e and u," Sov. Phys. Usp., Vol. 10, No. 4, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Ran, L., J. Huangfu, H. Chen, X. M. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental study on Research," Progress In Electromagnetics Research, Vol. 51, 249, 2005.
doi:10.2528/PIER04040502

3. Sui, Q., C. Li, L. L. Li, and F. Li, "Experimental study of lambda/4 monopole antennas in a left-handed meta-material," Progress In Electromagnetics Research, Vol. 51, 281-293, 2005.
doi:10.2528/PIER04011202

4. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory. Tech., Vol. 47, No. 11, 2075, 1999.
doi:10.1109/22.798002

5. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. C., Vol. 10, 4785, 1998.

6. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

7. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 6, 77, 2001.
doi:10.1126/science.1058847

8. Grzegorczyk, T. M., X. Chen, J. Pacheco, J. Chen, B.-I. Wu, and J. A. Kong, "Reflection coefficients and Goos-Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials," Progress In Electromagnetics Research, Vol. 51, 83, 2005.
doi:10.2528/PIER04040901

9. Maslovski, S., P . Ikonen, I. Kolmakov, S. Tretyakov, and M. Kaunisto, "Artificial magnetic materials based on the new magnetic particle: metasolenoid," Progress In Electromagnetics Research, Vol. 54, 61, 2005.
doi:10.2528/PIER04101101

10. Bilotti, F., A. Alu, N. Engheta, and L. Vegni, "Anomalous properties of scattering from cavities partially loaded with double-negative or single-negative metamaterials," Progress In Electromagnetics Research, Vol. 51, 49, 2005.
doi:10.2528/PIER04041401

11. Chew, W. C., "Some reflections on double negative materials," Progress In Electromagnetics Research, Vol. 51, 1, 2005.
doi:10.2528/PIER04032602

12. Grzegorczyk, T. M., C. D. Moss, J. Lu, X. Chen, J. Pacheco Jr., and J. A. Kong, "Prop erties of Left-Handed metamaterials: transmission," IEEE Microwave Theory and Tech., Vol. 53, 2956, 2005.
doi:10.1109/TMTT.2005.854261

13. Ran, L., J. Huangfu, Y. Li, H. Chen, X. M. Zhang, K. Chen, and J. A. Kong, "Micro wave solid-state left-handed material with a broad bandwidth and an ultralow loss," Physical Review B, Vol. 70, 073102, 2004.
doi:10.1103/PhysRevB.70.073102

14. Chen, H., L. Ran, J. Huangfu, X. M. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Magnetic properties of S-shaped split-ring resonators," Progress In Electromagnetics Research, Vol. 51, 231, 2005.
doi:10.2528/PIER04051201

15. Chen, H., L. Ran, J. Huangfu, X. M. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E., Vol. 70, 057605, 2004.
doi:10.1103/PhysRevE.70.057605

16. Luo, C., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B., Vol. 65, 201104, 2002.
doi:10.1103/PhysRevB.65.201104

17. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, 2005.

18. Yao, H. Y., L. W. Li, Q. Wu, and J. A. Kong, "Macroscopic performance analysis of metamaterials synthesized from microscopic 2-d isotropic cross split-ring resonator array," Progress In Electromagnetics Research, Vol. 51, 197, 2005.
doi:10.2528/PIER04020301

19. Caloz, C., A. Lai, and T. Itoh, "The challenge of homogenization in metamaterials," New Journal of Physics, Vol. 7, 167, 2005.
doi:10.1088/1367-2630/7/1/167

20. Aydin, K., I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "In vestigation of magnetic resonances for different splitring resonator parameters and designs," New Journal of Physics, Vol. 7, 168, 2005.
doi:10.1088/1367-2630/7/1/168

21. Quan, B. G., C. Li, Q. Sui, J. J. Li, W. M. Liu, F. Li, and C. Z. Gu, "Effects of substrates with different dielectric parameters on left-handed frequency of left-handed materials," Chinese Physics Letters, Vol. 22, No. 5, 1243, 2005.
doi:10.1088/0256-307X/22/5/061

22. Marques, R., F. Medina, and R. Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left-handed metamaterials," Phys. Rev B., Vol. 65, 144440, 2002.
doi:10.1103/PhysRevB.65.144440

23. Chen, H., L. Ran, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, "Equivalent circuit model for left-handed metamaterials," J. Appl. Phys., Vol. 100, 024915, 2006.
doi:10.1063/1.2219986

24. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E., Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608