Vol. 71
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-02-28
Homogenization of Metamaterial-Loaded Substrates and Superstrates for Antennas
By
, Vol. 71, 129-147, 2007
Abstract
This article deals with an approach to the design of planar antennas that use metamaterial-loaded substrates based on the effective medium approximations. Metamaterials are structured composite materials with unique electromagnetic properties due to the interaction of electromagnetic waves with the finer scale periodicity of conventional materials. They may be used to modify the effective electromagnetic parameters of planar antenna substrates and to design antennas with the improved coupling to the feed, increased impedance matching bandwidths, miniaturized dimensions, and narrower beamwidths compared to those that use conventional dielectric materials for the same purposes. The electromagnetic analysis and optimization based on the effective medium approximations of metamaterials is very convenient since it deals with only a few bulk medium parameters instead of a large number of parameters describing a discrete structure. At the same time, the most common way of obtaining these effective medium parameters is transmission/reflection simulations or measurements in free space or in a homogeneous background medium. For a host medium which is not homogeneous, as for a grounded substrate, the effective medium parameters are different from the free space ones. The scattering losses in a metamaterial medium need to be accurately taken into account and included as parameters in full-wave bulk medium models. For this reason, in the effective medium approach for antenna substrates, one needs to use the appropriate effective medium approximations that take the coupling between inclusions into account and also to evaluate the effects of the scattering losses. In practice, this is done by finding the effective medium parameters inside an arbitrary substrate medium, and not in a homogeneous host medium or in free space. This paper presents the methodology and the results of FDTD analysis of planar antennas that have substrates with various metamaterial inclusion densities. The effective bulk medium approach presented in the article is analyzed by comparing the antenna return losses and radiation patterns to the ones computed for a discrete structure. The Green's function of the host medium (antenna substrate) is used to calculate the approximate bulk effective medium parameters of the MTM-loaded substrate.
Citation
Andrey Semichaevsky, and Alkim Akyurtlu, "Homogenization of Metamaterial-Loaded Substrates and Superstrates for Antennas," , Vol. 71, 129-147, 2007.
doi:10.2528/PIER07021001
References

1. Ikonen, P.M. Karkkainen, and S. Tretyakov, "Experimental study of a λ/2-patch antenna loaded with an array of metasolenoids as artificial magnetic substrate," IEEE Antennas and Propagation Society International Symposium, Vol. 2A, 3-8, 2005.

2. Ikonen, P., S. Maslovski, and S. Tretyakov, "PIFA loaded with artificial magnetic material: Practical example for two utilization strategies," Microwave and Optical Technology Letters, Vol. 46, No. 3, 205-210, 2005.
doi:10.1002/mop.20946

3. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, T. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

4. Xu, W., L. W. Li, H. Y. Yao, T. S. Yeo, and Q. Wu, "Lefthanded material effects on waves modes and resonant frequencies: filled waveguide structures and substrate-loaded patch antennas," Journal ofEle ctromagnetic Waves and Applications, Vol. 19, No. 15, 2033-2047, 2005.
doi:10.1163/156939305775570459

5. Kiziltas, G.Y. Koh, J. L. Volakis, N. Kikuchi, and J. Halloran, "Optimum design and fabrication of volumetric graded substrate for a broad band miniature antenna," IEEE Antennas and Propagation Society International Symposium, Vol. 1, 485-488, 2003.

6. Lee, Y.H. Yang, and C. Parini, "Applications of Electromagnetic Bandgap (EBG) structures for novel communication antenna designs," 36th European Microwave Conference, No. 9, 1056-1059, 2006.

7. Mosallaei, H. and K. Sarabandi, "Design and modeling of patch antenna printed on magneto-dielectric embedded-circuit metasubstrate," IEEE Trans. on Antennas and Propagat., Vol. 55, No. 1, 45-52, 2007.
doi:10.1109/TAP.2006.886566

8. Xu, W., L. W Li, H. Y. Yao, T. S. Yeo, and Q. Wu, "Extraction of constitutive relation tensor parameters of SRR Structures using transmission line theory," Journal ofEle ctromagnetic Waves and Applications, Vol. 20, No. 1, 13-25, 2006.
doi:10.1163/156939306775777413

9. Weiglhofer, W. and A. Lakhtakia, Introduction to Complex Mediums for Optics and Electromagnetics, SPIE Press, 2003.

10. Caloz, B., A. Lai, and T. Itoh, "The challenge of homogenization in metamaterials," New Journal ofPhysics, Vol. 7, 1-15, 2005.
doi:10.1088/1367-2630/7/1/001

11. Silveirinha, M. G., "Additional boundary condition for the wire medium," IEEE Trans on Antennas and Propagat., Vol. 54, No. 6, 1766-1780, 2006.
doi:10.1109/TAP.2006.875920

12. Simovski, C. R.I. Kolmakov, and S. A. Tretyakov, "Approaches to the homogenization of periodical metamaterials," International Conference on Mathematical Methods in Electromagnetic Theory, 26-29, 2006.

13. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4188, 2000.
doi:10.1103/PhysRevLett.84.4184

14. Saadoun, M. M. and N. Engheta, "The pseudochiral Ω-medium: what is it? And what can it be used for?'' IEEE Antennas and Propagation Society International Symposium," ``The pseudochiral Ω-medium: what is it? And what can it be used for? IEEE Antennas and Propagation Society International Symposium, Vol. 4, 18-25, 1992.

15. Ishimaru, A., S.-W. Lee, Y. Kuga, and V. Jandhyala, "Generalized constitutive relations for metamaterials based on the quasi-static Lorentz theory," IEEE Trans. on Antennas and Propagat., Vol. 51, No. 10, 2550-2557, 2003.
doi:10.1109/TAP.2003.817565

16. Jackson, D., Classical Electrodynamics, 2nd edition, John Wiley and Sons, Inc., 1975.

17. Born, M. and E. Wolf, Principles ofOptics, 7th edition, Cambridge University Press, 1999.

18. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge-and broadside-coupled split ring resonators for metamaterial design — theory and experiments," IEEE Trans. on Antennas and Propagat., Vol. 51, No. 10, 2572-2581, 2003.
doi:10.1109/TAP.2003.817562

19. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proceedings ofthe IEEE, Vol. 62, 33-36, 1974.

20. Balanis, C., Antenna Theory, Analysis and Design, Harper and Row, New York, 1983.

21. Pendry, J. B., "Magnetism from conductors and other nonlinear phenomena," IEEE Trans. on Microwave Theory and Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

22. Best, S. R., "A Comparison of the resonant properties of small space-filling fractal antennas," IEEE Antennas and Wireless Propagat. Lett., Vol. 2, 197-200, 2003.
doi:10.1109/LAWP.2003.819680

23. Best, S. R., "A discussion on the properties of electrically small self-resonant wire antennas," IEEE Antennas and Propagation Magazine, Vol. 46, No. 6, 9-22, 2004.
doi:10.1109/MAP.2004.1396731

24. Pozar, D., Microwave Engineering, 3rd edition, Wiley, 2004.

25. Li, C., Q. Sui, and F. Li, "Complex guided wave solutions of grounded dielectric slab made of metamaterials," Progress In Electromagnetics Research, Vol. 51, 187-195, 2005.
doi:10.2528/PIER04011203

26. Kelley, D. and R. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. on Antennas and Propagat., Vol. 44, No. 6, 792-798, 1996.
doi:10.1109/8.509882

27. Schrank, H. and J. D. Mahony, "Approximations to the radiation resistance and directivity of circular-loop antennas," IEEE Antennas and Propagation Magazine, Vol. 36, No. 4, 52-55, 1994.
doi:10.1109/74.317780