Vol. 74
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-05-05
A Stable Integral Equation Solver for Electromagnetic Scattering by Large Scatterers with Concave Surface
By
, Vol. 74, 113-130, 2007
Abstract
Electromagnetic scattering by electrically large scatterers usually requires a large number of unknowns. To reduce the matrix size, one expects to choose a small sampling rate for the unknown function. In the method of moments (MoM) scheme, this rate is about 10 unknowns per wavelength for electrically small or medium scatterers. However, this rate may not work well for electrically large scatterers with a concave surface. The concave area on the scatter is observed to be the oscillatory part in the solution domain. The oscillation property requires more samplings to eliminate the numerical noises. The multiscalets with a multiplicity of two are higher-order bases. It is shown that the multiscalets are more suitable to represent the unknown function with oscillatory characteristic. Furthermore, the testing scheme under the discrete Sobolev-type inner product allows the MoM have the derivative sampling which enhances the tracking quality of the multiscalets further. Numerical Examples of scattering by 1000 and 1024 wavelength 2D scatterers demonstrate that the use of multiscalets in the MoM can keep the same discretization size for electrically large scatterers as for electrically small scatterers without losing the accuracy of the solution. In contrast, the traditional MoM and Nyström method require the finer discretization scheme if achieving a stable solution.
Citation
Mei Song Tong , "A Stable Integral Equation Solver for Electromagnetic Scattering by Large Scatterers with Concave Surface," , Vol. 74, 113-130, 2007.
doi:10.2528/PIER07041506
http://www.jpier.org/PIER/pier.php?paper=07041506
References

1. Harrington, R. F., Field Computation by Moment Methods, IEEE Press, New York, 1993.

2. Al Sharkawy, M. H., V. Demir, and A. Z. Elsherbeni, "The iterative multi-region algorithm using a hybrid finite difference frequency domain and method of moment techniques," Progress In Electromagnetics Research, Vol. 57, 19-32, 2006.
doi:10.2528/PIER05071001

3. Wang, S., X. Guan, D. Wang, X. Ma, and Y. Su, "Electromagnetic scattering by mixed conducting/dielectric objects using higherorder MOM," Progress In Electromagnetics Research, Vol. 66, 51-63, 2006.
doi:10.2528/PIER06092101

4. Chew, W. C., J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Boston, 2001.

5. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Ant. Propag. Mag., Vol. 35, No. 3, 7-12, 1993.
doi:10.1109/74.250128

6. Song, J. M. and W. C. Chew, "Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering," Micro. Opt. Tech. Lett., Vol. 10, No. 1, 14-19, 1995.
doi:10.1002/mop.4650100107

7. Song, J. M. and W. C. Chew, "Large scale computations using FISC," IEEE Antennas Propag. Soc. Int. Symp., Vol. 4, 1856-1859, 2000.

8. Pan, X. M. and X. Q. Sheng, "A highly efficient parallel approach of multi-level fast multipole algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1081-1092, 2006.
doi:10.1163/156939306776930321

9. Bucci, O. M., G. D'Elia, and M. Santojanni, "A fast multipole approach to 2D scattering evaluation based on a non redundant implementation of the method of auxiliary sources," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1715-1723, 2006.
doi:10.1163/156939306779292174

10. Canino, L. S., J. J. Ottusch, M. A. Stalzer, J. L. Visher, and S. Wandzura, "Numerical solution of the Helmholtz equation in 2D and 3D using a high-order Nyström discretization," J. Comput. Phys., Vol. 146, No. 2, 627-663, 1998.
doi:10.1006/jcph.1998.6077

11. Gedney, S. D., "On deriving a locally corrected Nyström scheme from a quadrature sampled moment method," IEEE Trans. Antennas Propagat., Vol. 51, No. 9, 2402-2412, 2003.
doi:10.1109/TAP.2003.816305

12. Burghignoli, P., C. Di Nallo, F. Frezza, and A. Galli, "A simple Nyström approach for the analysis of 3D arbitrarily shaped conducting and dielectric bodies," Int. J. Numer. Model. El., Vol. 16, No. 2, 179-194, 2003.
doi:10.1002/jnm.495

13. Pan, G., Wavelets in Electromagnetics and Device Modeling, John Wiley & Sons, Hoboken, 2003.

14. Pan, G., M. Tong, and B. Gilbert, "Multiwavelet based moment method under discrete Sobolev-type norm," Micro. Opt. Tech. Lett., Vol. 40, No. 1, 47-50, 2004.
doi:10.1002/mop.11282

15. Tong, M., G. Pan, and G. Lei, "Full-wave analysis of coupled lossy transmission lines using multiwavelet-based method of moments," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 7, 2362-2370, 2005.
doi:10.1109/TMTT.2005.850438

16. Zunoubi, M. R. and A. A. Kishk, "A combined Bi-Cgstab (1) and wavelet transform method for EM problems using method of moments," Progress In Electromagnetics Research, Vol. 52, 205-224, 2005.
doi:10.2528/PIER04080903

17. Alyt, O. M., A. S. Omar, and A. Z. Elsherbeni, "Detection and localization of RF radar pulses in noise environments using wavelet packet transform and higher order statistics," Progress In Electromagnetics Research, Vol. 58, 301-317, 2006.
doi:10.2528/PIER05070204

18. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, New York, 1989.

19. Adams, L. and J. L. Nazareth, Linear and Nonlinear Conjugate Gradient-related Methods, Society for Industrial and Applied Mathematics, Philadelphia, 1996.

20. Kolm, P. and V. Rokhlin, "Numerical quadratures for singular and hypersingular integrals," Comput. Math. Appl., Vol. 41, No. 3, 327-352, 2001.
doi:10.1016/S0898-1221(00)00277-7

21. Wagner, R. L. and W. C. Chew, "A study of wavelets for the solution of electromagnetic integral equation," IEEE Trans. Antennas Propagat., Vol. 43, No. 8, 802-810, 1995.
doi:10.1109/8.402199

22. Pan, G., Y. V. Tretiakov, and B. Gilbert, "Smooth local cosine based Galerkin method for scattering problems," IEEE Trans. Antennas Propagat., Vol. 51, No. 6, 1177-1184, 2003.
doi:10.1109/TAP.2003.809086

23. Deng, H. and H. Ling, "Fast solution of electromagnetic integral equations using adaptive wavelet packet transform," IEEE Trans. Antennas Propagat., Vol. 47, No. 4, 674-682, 1999.
doi:10.1109/8.768807

24. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN: the art of scientific computing, 2nd edition, Cambridge University Press, New York, 1992.

25. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York, 1970.