Vol. 74
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-05-22
Two-Dimensional Electromagnetic Scattering of Non-Plane Incident Waves by Periodic Structures
By
Progress In Electromagnetics Research, Vol. 74, 241-271, 2007
Abstract
This paper proposes the pseudo-periodic Fourier transform to analyze the electromagnetic scattering from periodic structures with non-plane wave incidence. The pseudo-periodic Fourier transform converts arbitrary field components into pseudo-periodic functions and the conventional grating theories based on the Floquet theorem become applicable. The inverse transform is given by integrating with respect to the transform parameter over a finite interval and the near field analysis requires numerical integration. Some application examples are numerically examined and the results show good convergence.
Citation
Koki Watanabe, and Kiyotoshi Yasumoto, "Two-Dimensional Electromagnetic Scattering of Non-Plane Incident Waves by Periodic Structures," Progress In Electromagnetics Research, Vol. 74, 241-271, 2007.
doi:10.2528/PIER07050902
References

1. Petit, R. (ed.), Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics, Vol. 22 of Topics in Current Physics, 1980.

2. Kriezis, Em. E., P. K. Pandelakis, and A. G. Papagiannakis, "Diffraction of a Gaussian beam from a periodic planar screen," J. Opt. Soc. Am. A, Vol. 11, No. 2, 630-636, 1994.

3. Yang, J., L. W. Li, K. Yasumoto, and C. H. Liang, "Twodimensional scattering of a Gaussian beam by a periodic array of circular cylinders," IEEE Trans. Geosci. Remote Sensing, Vol. 43, No. 2, 280-285, 2005.
doi:10.1109/TGRS.2004.841416

4. Caloz, C., A. K. Skrivervik, and F. E. Gardiol, "An efficient method to determine Green's functions of a two-dimensional photonic crystal excited by a line source—the phased-array method," IEEE Trans. Microwave Theory and Techniques, Vol. 50, No. 5, 1380-1391, 2002.
doi:10.1109/22.999153

5. Jandieri, V., H. Toyama, and K. Yasumoto, "Radiation from a localized line source in two-dimensional photonic crystals," The Papers of Technical Meeting on Electromagnetic Theory, 06-13, 2006.

6. Nakayama, J., "Periodic Fourier transform and its application to wave scattering from a finite periodic surface," IEICE Trans. Electron., Vol. E83-C, No. 3, 481-487, 2000.

7. Watanabe, K. and K. Kuto, "Numerical analysis of optical waveguides based on periodic Fourier transform," Progress In Electromagnetics Research, Vol. 64, 1-21, 2006.
doi:10.2528/PIER06060802

8. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.

9. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1990.

10. Roussel, H., W. C. Chew, F. Jouvie, and W. Tabbara, "Electromagnetic scattering from dielectric and magnetic gratings of fibers — a T-matrix solution," J. Electromagnetic Waves and Appl., Vol. 10, No. 1, 109-127, 1996.

11. Yasumoto, K. and K. Yoshitomi, "Efficient calculation of lattice sums for free-space periodic Green's function," IEEE Trans. Antennas Propagat., Vol. 47, No. 6, 1050-1055, 1999.
doi:10.1109/8.777130

12. Kushta, T. and K. Yasumoto, "Electromagnetic scattering form periodic array of two circular cylinders per unit cell," Progress In Electromagnetics Research, Vol. 29, 69-85, 2000.
doi:10.2528/PIER99103101

13. Toyama, H. and K. Yasumoto, "Eelectromagnetic scattering from periodic arrays of composite circular cylinder with internal cylindrical scatterers," Progress In Electromagnetics Research, Vol. 52, 321-333, 2005.
doi:10.2528/PIER04100101

14. Jia, H. and K. Yasumoto, "Rigorous analysis of guided modes of two-dimensional metallic electromagnetic crystal waveguides," J. Electromagnetic Waves and Appl., Vol. 19, No. 14, 1919-1933, 2005.
doi:10.1163/156939305775570620

15. Yokota, M., T. Takenaka, and O. Fukumitsu, "Scattering of a Hermite-Gaussian beam mode by parallel dielectric circular cylinders," J. Opt. Soc. Am. A, Vol. 3, No. 4, 580-586, 1986.

16. Knop, K., "Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves," J. Opt. Soc. Am., Vol. 68, No. 9, 1206-1210, 1978.

17. Moharam, M. G. and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am., Vol. 72, No. 10, 1385-1392, 1982.

18. Watanabe, K., J. Pǐstora, M. Foldyna, K. Postava, and J. Vlˇcek, "Numerical study on the spectroscopic ellipsometry of lamellar gratings made of lossless dielectric materials," J. Opt. Soc. Am. A, Vol. 22, No. 4, 745-751, 2005.
doi:10.1364/JOSAA.22.000745