1. Guida, G., A. de Lustrac, and A. Priou, "An introduction to photonic band gap (PBG) materials," Progress In Electromagnetics Research, Vol. 41, 1-20, 2003.
doi:10.2528/PIER02010801 Google Scholar
2. Lee, R. K., Y. Xu, and A. Yariv, "Microcavities photonic bandgaps and applications to lasers and optical communications," IEEE Lasers and Electro-Optics Society 1999 12th Annual Meeting.LEOS '99, 1999. Google Scholar
3. Bayindir, M. and E. Ozbay, "Band-dropping via coupled photonic crystal waveguides," Optics Express, Vol. 10, No. 22, 1279-1284, 2002. Google Scholar
4. Cuesta-Soto, F., A. Martnez, J. Garca, F. Ramos, P. Sanchis, J. Blasco, and J. Mart, "All-optical switching structure based on a photonic crystal directional coupler," Optics Express, Vol. 12, No. 1, 161-167, 2004.
doi:10.1364/OPEX.12.000161 Google Scholar
5. Chen, C., S. Shi, D. W. Prather, and A. Sharkawy, "Beam steering with photonic crystal horn radiators," Optical Engineering, Vol. 43, No. 1, 174-180, 2004.
doi:10.1117/1.1627772 Google Scholar
6. Chien, F. S., Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, "Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides," Optics Express, Vol. 12, No. 6, 1119-1125, 2004.
doi:10.1364/OPEX.12.001119 Google Scholar
7. Ozbay, E., B. Temelkuran, and M. Bayindir, "Microwave applications of photonic crystals," Progress In Electromagnetics Research, Vol. 41, 185-209, 2003.
doi:10.2528/PIER02010808 Google Scholar
8. Rahmat-Samii, Y. and H. Mosallaei, "Electromagnetic bandgap structures: classification, characterization, and applications," International Conference on Antennas and Propagation, No. 4, 17-20, 2001.
9. Pottier, P., C. Seassal, X. Letartre, J. L. Leclercq, P. Viktorovitch, D. Cassagne, and C. Jouanin, "Triangular and hexagonal high Q-factor 2-D photonic bandgap cavities on III-V suspended membranes," Journal of Lightwave Technology, Vol. 17, No. 11, 2058-2062, 1999.
doi:10.1109/50.802995 Google Scholar
10. Smirnova, E. I.C. Chen, M. A. Shapiro, and R. J. Temkin, "Simulation of metallic photonic bandgap structures for accelerator applications," IEEE Particle Accelerator Conference, 933-935, 2001.
11. Smirnova, E. I., C. Chen, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin, "Simulation of photonic band gaps in metal rod lattices for microwave applications," Journal of Applied Physics, Vol. 91, No. 3, 960-968, 2002.
doi:10.1063/1.1426247 Google Scholar
12. Chen, M. Y. and R. J. Yu, "Analysis of photonic bandgaps in modified honeycomb structures," IEEE Photonics Technology Letters, Vol. 16, No. 3, 819-821, 2004.
doi:10.1109/LPT.2004.823719 Google Scholar
13. Silveirinha, M. G. and C. A. Fernandes, "A hybrid method for the efficient calculation of the band structure of 3-D metallic crystals," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 3, 889-902, 2004.
doi:10.1109/TMTT.2004.823563 Google Scholar
14. Ward, A. J., "Transfer matrices, photonic bands and related quantities," Imperial College of Science, No. 7, 1996. Google Scholar
15. Taflove, A. and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd edition, 2000.
16. Pelosi, G., R. Coccioli, and S. Selleri, Quick Finite Element Method for Electromagnetic Waves, Chapter 5, 1998.
17. Zheng, L. G. and W. X. Zhang, "Study on bandwidth of 2-D dielectric PBG material," Progress In Electromagnetics Research, Vol. 41, 83-106, 2003.
doi:10.2528/PIER02010804 Google Scholar
18. Brillouin, L., Wave Propagation in Periodic Structures, Chapter VI, 1946.
19. Luan, P. and Z. Ye, Two dimensional photonic crystals, http://arxiv.org/PS cache/condmat/ pdf/0105/0105428v1.pdf.