Vol. 75
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-06-07
Biased Magnetic Materials in RAM Applications
By
Progress In Electromagnetics Research, Vol. 75, 85-117, 2007
Abstract
The magnetization of a ferro- or ferri-magnetic material has been modeled with the Landau-Lifshitz-Gilbert (LLG) equation. In this model demagnetization effects are included. By applying a linearized small signal model of the LLG equation, it was found that the material can be described by an effective permeability and with the aid of a static external biasing field, the material can be switched between a Lorentz-like material and a material that exhibits a magnetic conductivity. Furthermore, the reflection coefficient for normally impinging waves on a PEC covered with a ferro/ferrimagnetic material, biased in the normal direction, is calculated. When the material is switched into the resonance mode, two distinct resonance frequencies in the reflection coefficient were found, one associated with the precession frequency of the magnetization and the other associated with the thickness of the layer. The former of these resonance frequencies can be controlled by the bias field and for a bias field strength close to the saturation magnetization, where the material starts to exhibit a magnetic conductivity, lowreflection (around −20 dB) for a quite large bandwidth (more than two decades) can be achieved.
Citation
Jörgen Ramprecht, and Daniel Sjöberg, "Biased Magnetic Materials in RAM Applications," Progress In Electromagnetics Research, Vol. 75, 85-117, 2007.
doi:10.2528/PIER07052501
References

1. Knott, E. F., 2004., 2004.

2. Gustafsson, M., "RCS reduction of integrated antenna arrays with resistive sheets," J. Electro. Waves Applic., Vol. 20, No. 1, 27-40, 2006.
doi:10.1163/156939306775777323

3. Gustafsson, M., "Surface integrated dipole arrays with tapered resistive edge sheets," J. Electro. Waves Applic., Vol. 21, No. 6, 713-718, 2007.
doi:10.1163/156939307780749093

4. Ruck, G. T., D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook, Vol. 2, Vol. 2, 1970.

5. Sjöberg, D., "On uniqueness and continuity for the quasi-linear, bianisotropic Maxwell equations, using an entropy condition," Progress In Electromagnetics Research, Vol. 71, 317-339, 2007.
doi:10.2528/PIER07030804

6. Strifors, H. C. and G. C. Gaunaurd, "Bistatic scattering by bare and coated perfectly conducting targets of simple shape," J. of Electromagn. Waves and Appl., Vol. 20, No. 8, 1037-1050, 2006.
doi:10.1163/156939306776930295

7. Gong, Z. Q. and G. Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
doi:10.2528/PIER06071301

8. Musal, J. H. M. and H. T. Hahn, "Thin-layer electromagnetic absorber design," IEEE Trans. Magnetics, Vol. 25, No. 9, 3851-3853, 1989.
doi:10.1109/20.42454

9. Kim, S. S. and D. Han, "Microwave absorbing properties of sintered Ni-Zn ferrite," IEEE Trans. Magnetics, Vol. 30, No. 6, 4554-4556, 1994.
doi:10.1109/20.334146

10. Shin, J. Y. and J. H. Oh, "The microwave absorbing phenomena of ferrite microwave absorbers," IEEE Trans. Magnetics, Vol. 29, No. 6, 3437-3439, 1993.
doi:10.1109/20.281188

11. Cho, H. S. and S. S. Kim, "M-hexaferrites with planar magnetic anisotropy and their application to high-frequency microwave absorbers," IEEE Trans. Magnetics, Vol. 35, No. 5, 3151-3253, 1999.
doi:10.1109/20.801111

12. Pinho, M. S., M. L. Gregori, R. C. R. Nunes, and B. G. Soares, "Performance of radar absorbing materials by waveguide measurements for X-and Ku-band frequencies," European Polymer Journal, Vol. 38, 2321-2327, 2002.
doi:10.1016/S0014-3057(02)00118-0

13. Haijun, Z., L. Zhichao, M. Chengliang, Y. Xi, Z. Liangying, and W. Mingzhong, "Complex permittivity, permeability, and microwave absorption of Zn-and Ti-substituted barium ferrite by citrate sol/gel process," Materials Science and Engineering B, Vol. 96, 289-295, 2002.
doi:10.1016/S0921-5107(02)00381-1

14. Meshrama, M., N. K. Agrawal, B. Sinha, and P. Misra, "Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber," Journal of Magnetismand Magnetic Materials, Vol. 271, 207-214, 2004.
doi:10.1016/j.jmmm.2003.09.045

15. Kim, S.-S., S.-T. Kim, J.-M. Ahn, and K.-H. Kim, "Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollowceramic microspheres of lowdensit y," Journal of Magnetismand Magnetic Materials, Vol. 271, 39-45, 2004.
doi:10.1016/j.jmmm.2003.09.012

16. Zhang, B., G. Lu, Y. Fenga, J. Xiong, and H. Lu, "Electromagnetic and microwave absorption properties of Alnico powder composites," Journal of Magnetismand Magnetic Materials, Vol. 299, 205-210, 2006.
doi:10.1016/j.jmmm.2005.04.003

17. Engström, C. and D. Sjöberg, "On two numerical methods for homogenization of Maxwell's equations," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1845-1856, 2007.

18. Wallace, J. L., "Broadband magnetic microwave absorbers: Fundamental limitations," IEEE Trans. Magnetics, Vol. 29, No. 6, 4209-4214, 1993.
doi:10.1109/20.280862

19. Bregar, V. B., "Advantages of ferromagnetic nanoparticle composites in microwave absorbers," IEEE Trans. Magnetics, Vol. 40, No. 3, 1679-1684, 2004.
doi:10.1109/TMAG.2004.826622

20. Wu, L. Z., J. Ding, H. B. Jiang, L. F. Chen, and C. K. Ong, "Particle size influence to the microwave properties of iron based magnetic particulate composites," Journal of Magnetismand Magnetic Materials, Vol. 285, 233-239, 2005.
doi:10.1016/j.jmmm.2004.07.045

21. Collin, R. E., Foundations for Microwave Engineering, 2nd edition, 1992.

22. Pozar, D. M., Microwave Engineering, Addison-Wesley, 1990.

23. Kong, J. A., Theory of Electromagnetic Waves, John Wiley & Sons, 1975.

24. Jackson, J. D., Classical Electrodynamics, 3rd edition, 1998.

25. Kittel, C., Introduction to Solid State Physics, 7th edition, 1996.

26. Kittel, C., "Physical theory of ferromagnetic domains," Rev. Mod. Phys., Vol. 21, No. 10, 541-583, 1949.
doi:10.1103/RevModPhys.21.541

27. Goodenough, J. B., "Summary of losses in magnetic materials," IEEE Trans. Magnetics, Vol. 38, No. 9, 3398-3408, 2002.
doi:10.1109/TMAG.2002.802741

28. Elliot, R. S., An Introduction to Guided Waves and Microwave Circuits, Prentice Hall, 1993.

29. Sodha, M. S. and N. C. Srivastava, Microwave Propagation in Ferrimagnetics, Plenum Press, 1981.

30. Landau, L. D. and E. M. Lifshitz, "On the theory of the dispersion of magnetic permeability in ferromagnetic bodies," Physik. Z. Sowjetunion, Vol. 8, 153-169, 1935.

31. Gilbert, T. L., "A phenomenological theory of damping in ferromagnetic materials," IEEE Trans. Magnetics, Vol. 50, No. 11, 3443-3449, 2004.
doi:10.1109/TMAG.2004.836740

32. Yu, Y. and J. W. Harrel, "FMR spectra of oriented γ-Fe2O3, Co- γ-Fe203, CrO2, and MP tapes," IEEE Trans. Magnetics, Vol. 30, No. 6, 4083-4085, 1994.
doi:10.1109/20.333996

33. Kikuchi, R., "On the minimum of magnetization reversal time," J. Appl Phys., Vol. 27, No. 11, 1352-1357, 1956.
doi:10.1063/1.1722262

34. Mallison, J. C., "On damped gyromagnetic precession," IEEE Trans. Magnetics, Vol. 23, No. 7, 2003-2004, 1987.
doi:10.1109/TMAG.1987.1065181

35. Barybin, A. A., "Excitation theory for space-dispersive active media waveguides," J. Phys. D: Applied Phys., Vol. 32, No. 6, 2014-2028, 1999.
doi:10.1088/0022-3727/32/16/310

36. d'Aquino, M., ``Nonlinear magnetization dynamics in thin-films and nanoparticles, '' Ph.D. thesis, "Universita degli studi di Napoli Federico II''," Universita degli studi di Napoli ``Federico II, 2004.

37. Yaghjian, A. D., "Electric dyadic green's functions in the source region," Proc. IEEE, Vol. 68, No. 2, 248-263, 1980.

38. Barybin, A. A., "Modal expansions and orthogonal complements in the theory of complex media waveguide excitation by external sources for isotropic, anisotropic, and bianisotropic media," Progress In Electromagnetics Research, Vol. 19, 241-300, 1998.
doi:10.2528/PIER97120800