1. Guerin, F., "Micr owave chiral materials: a reviw of experimental studies and some results on composites with ferroelectric ceramic inclusions," Progress In Electromagnetics Research, Vol. 9, 219-263, 1994. Google Scholar
2. Huang. C.-C. "Analysis of multiconduction transmission lines with nonlinear terminations in frequency domain," J. of Electromagn. Waves and Appl., Vol. 19, No. 8, 1069-10832005, 1069.
doi:10.1163/156939305775526142 Google Scholar
3. Wang, X.-H. and B.-Z. Wang, "Generalized transmission line theory for parallel planar transmission lines," J. of Electromagn. Waves and Appl., Vol. 19, No. 9., 1171-1181, 2005.
doi:10.1163/156939305775526025 Google Scholar
4. Sengupta, L. C. and S. Sengupta, "Breakthrough advantages in low loss,tunable dielectric materials," Mat. Res. Innovat., Vol. 2, 278-282, 1999.
doi:10.1007/s100190050098 Google Scholar
5. Chen, Y., X. Dong, J. Li, and Y. Wang, "Dielectric properties of Ba0.6Sr0.4TiO3/Mg2SiO4/MgO composite ceramics," J. Appl. Phys., Vol. 98, 2005. Google Scholar
6. Tummala, R., "Ceramic and glass-ceramic packaging in the 1990s," J. Am. Cer. Soc., Vol. 74, 895-908, 1991.
doi:10.1111/j.1151-2916.1991.tb04320.x Google Scholar
7. Barnwell, P.W. Zhang, J. Lebowitz, K. Jones, N. MacDonald, C. Free, and Z. Tian, "An investigation of the properties of LTCC materials and compatible conductors for their use in wireless applications," Proc. International Symposium on Microelectronics, 659-664, 2000.
8. Hakeem, N. A., H. I. Abdelkader, N. A. El-sheshtawi, and I. S. Eleshmawi, "Sp ectroscopic,thermal and electrical investigations of PVDF films filled with BiCl3," J. Appl. Pol. Sci., Vol. 102, 2125-2131, 2006.
doi:10.1002/app.24135 Google Scholar
9. Xu, H., J. Zhong, X. Liu, J. Chen, and D. Shen, "F erroelecric and switching behavior of poly(vinyliden fluoride-trifluoroethylene) copolymer ultrathin films with polypyrrole interface," Appl. Phys. Lett., Vol. 90, 2007. Google Scholar
10. Shynu, S. V., G. Augustin, C. K. Aanandan, P . Mohanan, and K. Vasudevan, "Design of compact reconfigurable dual frequency microstrip antennas using varactor diodes," Progress In Electromagnetics Research, Vol. 60, 197-205, 2006.
doi:10.2528/PIER05120101 Google Scholar
11. Zheng, Q.-R., B.-Q. Lin, Y.-Q. Fu, and N.-C. Yuan, "Characteristics and applications of a novel compact spiral electromagnetic band-gap (EBG) structure," J. of Electromagn. Waves and Appl., Vol. 21, No. 2, 199-213, 2007.
doi:10.1163/156939307779378844 Google Scholar
12. Lee, S.-W., Y. Kuga, and A. Ishimaru, "Quasi-static analysis of metamaterials with small tunable stacked split ring resonators," Progress In Electromagnetics Research, Vol. 51, 219-229, 2005.
doi:10.2528/PIER04020602 Google Scholar
13. Irvin, P., J. Levy, R. Guo, and A. Bhalla, "Three-dimensional polarization imaging of (Ba,Sr)TiO3:MgO composites," Appl. Phys. Lett., Vol. 86, 2005.
doi:10.1063/1.1854722 Google Scholar
14. Astafiev, K. F., V. O. Sherman, A. K. Tagantsev, and N. Setter, "Can the addition of a dielectric improve the figure of merit of a tunable material?'' J. Eur. Cer. Soc.," ``Can the addition of a dielectric improve the figure of merit of a tunable material? J. Eur. Cer. Soc., Vol. 23, 2381-2386, 2003. Google Scholar
15. Mokry, P., A. K. Tagantsev, and N. Setter, "Size effect on permittivity in ferroelectric polydomain thin films," Phys. Rev. B, Vol. 70, 2004.
doi:10.1103/PhysRevB.70.172107 Google Scholar
16. Sherman, V. O., A. K. Tagantsev, N. Setter, D. Iddles, and T. Price, "F erroelectric-dielectric tunable composites," J. Appl. Phys., Vol. 99, 2006.
doi:10.1063/1.2186004 Google Scholar
17. Stround, D. and P. M. Hui, "Nonlinear susceptibilities of granular matter," Phys. Rev. B, Vol. 37, 8719-8724, 1988.
doi:10.1103/PhysRevB.37.8719 Google Scholar
18. Stround, D. and V. E. Wood, "Decoupling approximation for the nonlinear-optical response of composite media," J. Opt. Soc. Am. B, Vol. 6, 778-786, 1989. Google Scholar
19. Bergman, D. J., "Nonlinear behavior and 1/f noise near a conductivity threshold: Effects of local microgeometry," Phys. Rev. B, Vol. 39, 4589-4609, 1989. Google Scholar
20. Vendik, O. G. and S. P. Zubko, "Mo deling the dielectric response of incipient ferroelectrics," J. Appl. Phys., Vol. 82, 4475-4483, 1997.
doi:10.1063/1.366180 Google Scholar
21. Garboczi, E. J., K. A. Snyder, and J. F. Douglas, "Geometrical percolation threshold of overlapping ellipsoids," Phys. Rev. E, Vol. 52, 819-828, 1995.
doi:10.1103/PhysRevE.52.819 Google Scholar
22. Sihvola, A., Electromagnetic Mixing Formulas and Applications, IEE ElectromagneticWaves Series 47, 1999.
23. Vendik, I. B., O. G. Vendik, and E. L. Kollberg, "Comm utation quality factor of two-state switchable devices," IEEE Trans. on Micr. Theor. and Techn., Vol. 48, 802-808, 2000.
doi:10.1109/22.841874 Google Scholar
24. Chowdhuri, P.T. Bement, C. Espinoza, and G. Weeks, "DC break down strength of dielectric materials at gyrogenic temperatures," Proc. of 7th IEEE/PES Transmission and Distribution Conference and Exposition, 140-147, 1979.
25. Duan, C., R. F. Sabirianov, W. Mei, S. S. Jaswal, and E. Y. Tsymbal, "In terface effect on ferroelectricity at the nanoscale," Nano Letters, Vol. 6, 483-487, 2006.
doi:10.1021/nl052452l Google Scholar
26. Sherman, V. O.A. K. Tagantsev, and N. Setter, "T unability and loss of the ferroelectric-dielectric composites," IEEE International Ultrasonics, 33-38, 2004.
27. Gallop, J. and L. Hao, "Single crystal microwave dielectrics at low temperature: losses and non-linearities," J. Eur. Cer. Soc., Vol. 23, 2367-2373, 2003.
doi:10.1016/S0955-2219(03)00341-8 Google Scholar
28. Herring, C., J. Appl. Phys., and Vol. 31, 1939, Vol. 31, 1960., 1960.
29. Jacob, V., J. Mazierska, K. Leong, and J. Krupka, "Micro wave properties of low-loss polymers at cryogenic temperatures," IEEE Trans. Micr. Theor. Techn., Vol. 50, 474-480, 2002.
doi:10.1109/22.982226 Google Scholar