Vol. 78
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-09-19
Hybridization of Simulation Codes Based on Numerical High and Low Frequency Techniques for the Efficient Antenna Design in the Presence of Electrically Large and Complex Structures
By
Progress In Electromagnetics Research, Vol. 78, 173-187, 2008
Abstract
A hybridization approach to integrate simulation codes based on high and low frequency techniques is developed in this paper. This work allows the antenna design to be performed directly in the presence of the complex and large structures.Since the sizes of the complex structures can be extremely large electrically, and the antenna structure itself can be significantly complicated, such problems can not be resolved with a single technique alone.While low frequency techniques are generally applied for antenna design problems where small scale interactions are involved, high frequency techniques are adopted for the prediction of propagation effects inside the complex structures.The proposed hybridization approach provides a seamless integration of low and high frequency techniques that combines the advantages of both techniques in terms of accuracy and efficiency. Numerical example is presented to demonstrate the utilization of the proposed approach.
Citation
Hsi-Tseng Chou, and Heng-Tung Hsu, "Hybridization of Simulation Codes Based on Numerical High and Low Frequency Techniques for the Efficient Antenna Design in the Presence of Electrically Large and Complex Structures," Progress In Electromagnetics Research, Vol. 78, 173-187, 2008.
doi:10.2528/PIER07091104
References

1. Chen, M., X.-W. Zhao, Y. Zhang, and C.-H. Liang, "Analysis of antenna around NURBS surface With iterative MOM-PO technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1667-1680, 2006.
doi:10.1163/156939306779292372

2. Ding, W., Y.Zhang, P.Y.Zhu, and C.H.Liang, "Study on electromagnetic problems involving combinations of arbitrarily oriented thin-wire antennas and inhomogeneous dielectric objects with a hybrid MOM-FDTD method," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1519-1533, 2006.
doi:10.1163/156939306779274255

3. Zhang, Y.-I. and E.-P. Li, "Scattering of three-dimensional chiral objects above a perfect conducting plane by hybrid finite element method," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 11, 1535-1546, 2005.
doi:10.1163/156939305775701813

4. Volakis, J.L., A.Chatterjee, and L.C.Kemp el, Finite Element Method for Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications, 368, IEEE Press and Oxford University Press, New York, 1998.

5. Taflove, A., "Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problems," Electromagnetic Compatibility, Vol. 22, 191-202, 1980.
doi:10.1109/TEMC.1980.303879

6. Harrington, F. F., Computation byMoment Methods, Macmillan, New York, 1968.

7. Kouyoumjian, R.G.and P.H.P athak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proceedings of the IEEE, Vol. 62, No. 11, 1448-1461, 1974.

8. Ufimtsev, P. Y., Method of Edge Waves in the Physical Theory of Diffraction, Wiley-IEEE Press, February 16, 2007.

9. Tiberio, R., S.Maci, and A.T occafondi, "An incremental theory of diffraction: electromagnetic formulation," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 1, 87-96, 1995.
doi:10.1109/8.366356

10. Chen, M., Y.Zhang, and C.H.Liang, "Calculation of the field distribution near electrically large NURBS surfaces with physical-optics method," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 11, 1511-1524, 2005.
doi:10.1163/156939305775701886

11. Zhang, P.F.and S.X.Gong, "Improvement on the forwardbackward iterative physical optics algorithm applied to computing the RCS of large open-ended cavities," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 21, 457-469, 2007.
doi:10.1163/156939307779367297

12. Attiya, A.M.and E.El-Diw any, "A time domain incremental theory of diffraction: Scattering of electromagnetic pulsed plane waves," Progress In Electromagnetics Research, Vol. 44, 81-101, 2004.
doi:10.2528/PIER03032001

13. Attiya, A.M.and E.El-Diw any, "Scattering of X-waves from a circular disk using a time domain incremental theory of diffraction," Progress In Electromagnetics Research, Vol. 44, 103-129, 2004.
doi:10.2528/PIER03032002

14. Attiya, A.M.and E.El-Diw any, "Diffraction of a Transverse Electric (TE) X-wave by conducting objects," Progress In Electromagnetics Research, Vol. 38167-198, 38167-198, 2002.

15. Chen, X.J.and X.W.Shi, "Backscattering of electrically large perfect conducting targets modeled by NURBS surfaces in halfspace," Progress In Electromagnetics Research, Vol. 77215-224, 77215-224, 2007.

16. Ruppin, R., "Scattering of electromagnetic radiation by a perfect electromagnetic conductor cylinder," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1853-1860, 2006.
doi:10.1163/156939306779292219

17. Thiele, G.A.and T.H.Newhouse, "A hybrid technique for combining moment methods with the geometrical theory of diffraction," IEEE Trans. Antennas Propagat., Vol. AP-23, No. 1, 1975.

18. Burnside, W., C. Yu, and R. Marhefka, "A technique to combine the geometrical theory of diffraction and the moment method," IEEE Transactions on Antennas and Propagation, Vol. 23, No. 7, 551-558, 1975.
doi:10.1109/TAP.1975.1141117

19. Fourie, A.and D.Nitc h, "SuperNEC: antenna and indoorpropagation simulation program," IEEE Antennas and Propagation Magazine, Vol. 42, No. 6, 31-48, 2000.
doi:10.1109/74.848946

20. Davidson, D. B.I. P. Theron, U. Jakobus, F. M. Landstorfer, F. J. C. Meyer, J.Mostert, and J. J. Tonder, "Recent progress on the antenna simulation program FEKO," Communications and Signal Processing, 7-8, 1998.

21. Stupfel, B. and M. Mognot, "A domain decomposition method for the vector wave equation," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 5, 653-660, 2000.
doi:10.1109/8.855483

22. NEC-BSC version 4.2 User's Manual, The Ohio State University, The Ohio State University, June 2000., 2000.

23. CST Studio Suite 2006B User's Manual, CST Computation Simulation Technology, CST Computation Simulation Technology, 2006., 2006.

24. Clemens, M., S.Feigh, and T.Weiland, "Geometric multigrid algorithms using the conformal finite integration technique," IEEE Transactions on Magnetics, Vol. 40, No. 3, 1065-1068, 2004.
doi:10.1109/TMAG.2004.825189

25. Garcia-Pino, A., F.Obelleiro, and J.L.Ro driguez, "Scattering from conducting open cavities by generalized ray expansion (GRE)," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 7, 989-992, 1993.
doi:10.1109/8.237634