Vol. 81
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-01-08
Truncated Cosine Fourier Series Expansion Method for Solving 2-d Inverse Scattering Problems
By
Progress In Electromagnetics Research, Vol. 81, 73-97, 2008
Abstract
Truncated cosine Fourier series expansion method is applied for reconstruction of lossy and inhomogeneous 2-D media by using inverse scattering method in time domain. In this method, the unknown parameters are expanded in a cosine Fourier series and coefficients of this expansion are optimized in particle swarm optimization (PSO) routine with the aid of finite difference time domain (FDTD) method as an electromagnetic (EM) solver. The performance of the algorithm is studied for several 2-D permittivity and conductivity profile reconstruction cases. It is shown that since only a limited number of terms are retained in the expansion, using the proposed method guarantees the well-posedness of the problem and uniqueness of the solution and various types of regularization may be used to only have more precise reconstruction. It is also shown that the number of unknowns in optimization routine is reduced more than 75 percent as compared with conventional methods which leads to a considerable reduction in the amount of computations with negligible adverse effect on the precision of reconstruction. Sensitivity analysis of the suggested method to the number of expansion terms in the algorithm is studied, as well.
Citation
Abbas Semnani, and Manouchehr Kamyab, "Truncated Cosine Fourier Series Expansion Method for Solving 2-d Inverse Scattering Problems," Progress In Electromagnetics Research, Vol. 81, 73-97, 2008.
doi:10.2528/PIER07122404
References

1. Bindu, G., A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Activ e microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802

2. Colton, D. and P. B. Monk, "Target identification of coated objects," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 4, 1232-1242, 2006.
doi:10.1109/TAP.2006.872564

3. Semenov, S. Y., V. G. Posukh, A. E. Bulyshev, Y. E. Sizov, and P. N. Repin, "Micro wave tomographic imaging of the heart in intact swine," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 873-890, 2006.
doi:10.1163/156939306776149897

4. Rosenthal, A. and M. Horowitz, "Inverse scattering algorithm for reconstructing strongly reflecting fiber bragg gratings," IEEE Journal of Quantum Electronics, Vol. 39, No. 8, 1018-1026, 2003.
doi:10.1109/JQE.2003.814365

5. Chen, X. and K. Huang, "Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method," Progress In Electromagnetics Research, Vol. 53, 283-298, 2005.
doi:10.2528/PIER04102902

6. Popovic, M. and A. Taflove, "Two-dimensional FDTD inversescattering scheme for determination of near-surface material properties at microwave frequencies," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 2366-2373, 2004.
doi:10.1109/TAP.2004.832515

7. Huang, C. H., Y. F. Chen, and C. C. Chiu, "P ermittivity distribution reconstruction of dielectric objects by a cascaded method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 145-159, 2007.
doi:10.1163/156939307779378790

8. Colton, D. and L. Paivarinta, "The uniqueness of a solution to an inverse scattering problem for electromagnetic waves," Arc. Ration. Mech. Anal., Vol. 119, 59-70, 1992.
doi:10.1007/BF00376010

9. Isakov, V., "Uniqueness and stability in multidimensional inverse problems," Inverse Problems, Vol. 9, 579-621, 1993.
doi:10.1088/0266-5611/9/6/001

10. Sheen, D. and D. Shepelsky, "Uniqueness in the simultaneous reconstruction of multiparameters of a transmission line," Progress In Electromagnetics Research, Vol. 21, 153-172, 1999.
doi:10.2528/PIER98072001

11. Tikhonov, A. N. and V. Arsenine, Solutions of Ill-posed Problem, Winston, 1977.

12. Hansen, P . C., Rank Deficient and Discrete Ill-posed Problems: Numerical Aspects of Linear Inversion, SIAM, 1998.

13. Abubakar, A. and P. M. Van Den Berg, "Total variation as a multiplicative constraint for solving inverse problems," IEEE Transactions on Image Processing, Vol. 10, No. 9, 1384-1392, 2001.
doi:10.1109/83.941862

14. Abubakar, A., P . M. Van Den Berg, T. M. Habashy, and H. Braunisch, "A multiplicative regularization approach for deblurring problems," IEEE Transactions on Image Processing, Vol. 13, No. 11, 1524-1532, 2004.
doi:10.1109/TIP.2004.836172

15. Chung, Y. S., C. Cheon, and S. Y. Hahn, "Reconstruction of dielectric cylinders using FDTD and topology optimization technique," IEEE Transactions on Magnetics, Vol. 36, No. 4, 956-959, 2000.
doi:10.1109/20.877600

16. Rekanos, I. T. and A. Raisanen, "Microwave imaging in the time domain of buried multiple scatterers by using an FDTDbased optimization technique," IEEE Transactions on Magnetics, Vol. 39, No. 3, 1381-1384, 2003.
doi:10.1109/TMAG.2003.810526

17. Abubakar, A., T. M. Habashy, and P. M. Van Den Berg, "Nonlinear inversion of multi-frequency microwave fresnel data using the multiplicative regularized contrast source inversion," Progress In Electromagnetics Research, Vol. 62, 193-201, 2006.
doi:10.2528/PIER06042205

18. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd edition, 2005.

19. Semnani, A. and M. Kamyab, "An enhanced method for inverse scattering problems using Fourier series expansion in conjunction with FDTD and PSO," Progress In Electromagnetics Research, Vol. 76, 45-64, 2007.
doi:10.2528/PIER07061204

20. Meyer, T.A. Jostingmeier, and A. S. Omar, "Micr owave imaging using a novel regularization scheme," Proceedings of the Antennas and Propagation Society International Symposium, Vol. 3, 175-178, 2003.

21. Khalaj-Amirhosseini, M., "Reconstruction of inhomogeneous dielectrics at microwave frequencies," Progress In Electromagnetics Research, Vol. 77, 75-84, 2007.
doi:10.2528/PIER07080202

22. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 397-407, 2004.
doi:10.1109/TAP.2004.823969

23. Lee, K. C. and J. Y. Jhang, "Application of particle swarm algorithm to the optimization of unequally spaced antenna arrays," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2001-2012, 2006.
doi:10.1163/156939306779322747

24. Chen, T. B., Y. L. Dong, Y. C. Jiao, and F. S. Zhang, "Syn thesis of circular antenna array using crossed particle swarm optimization algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1785-1795, 2006.
doi:10.1163/156939306779292273