Vol. 81
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-01-26
Multilevel Fast Multipole Algorithm for Radiation Characteristics of Shipborne Antennas Above Seawater
By
Progress In Electromagnetics Research, Vol. 81, 291-302, 2008
Abstract
Radiation characteristics of shipborne antennas above lossy half-space are studied using the multilevel fast multipole algorithm (MLFMA). The near terms in the MLFMA are evaluated by using the rigorous half-space dyadic Green's function, computed via the method of complex images. The far MLFMA interactions employ an approximate dyadic Green's function via a direct-radiation term plus a single real image, with the image amplitude characterized by the polarization-dependent Fresnel reflection coefficient. Finally, radiation patterns of an ultra-shortwave antenna mounted on a realistic 3-D ship over seawater are presented and compared with a rigorous method-ofmoments (MoM) solution.
Citation
Xun-Wang Zhao, Chang-Hong Liang, and Le Liang, "Multilevel Fast Multipole Algorithm for Radiation Characteristics of Shipborne Antennas Above Seawater," Progress In Electromagnetics Research, Vol. 81, 291-302, 2008.
doi:10.2528/PIER08012003
References

1. Michalski, K. A. and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Parts I and II," IEEE Trans. Antennas Propagat., Vol. 38, No. 3, 335-352, 1990.
doi:10.1109/8.52240        Google Scholar

2. Geng, N. and L. Carin, "Wideband electromagnetic scattering from a dielectric BOR buried in a layered lossy, dispersive medium," IEEE Trans. Antennas Propagat., Vol. 47, No. 4, 610-619, 1999.
doi:10.1109/8.768799        Google Scholar

3. Su, D. Y., D. M. Fu, and D. Yu, "Genetic algorithm and method of moments for the design of PIFAS," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603        Google Scholar

4. Chang, H. S. and K. K. Mei, "Scattering of electromagnetic waves by buried and partly buried bodies of revolution," IEEE Trans. Geosci. Remote Sensing, Vol. 23, 596-605, 1985.
doi:10.1109/TGRS.1985.289452        Google Scholar

5. Bourgeois, J. M. and G. S. Smith, "A fully three-dimensional simulation of a ground-penetrating radar: FDTD theory compared with experiment," IEEE Trans. Geosci. Remote Sensing, Vol. 34, No. 1, 36-44, 1996.
doi:10.1109/36.481890        Google Scholar

6. Ding, W., Y. Zhang, P. Y. Zhu, and C. H. Liang, "Study on electromagnetic problems involving combinations of arbitrarily oriented thin-wire antennas and inhomogeneous dielectric objects with a hybrid MoM-FDTD method," J. of Electromagn. Waves and Appl., Vol. 20, No. 11, 1519-1533, 2006.
doi:10.1163/156939306779274255        Google Scholar

7. Zhang, Y., X. W. Zhao, M. Chen, and C. H. Liang, "An efficient MPI virtual topology based parallel, iterative MoM-PO hybrid method on PC clusters," J. of Electromagn. Waves and Appl., Vol. 20, No. 5, 661-676, 2006.
doi:10.1163/156939306776137782        Google Scholar

8. Chen, M., X. W. Zhao, Y. Zhang, and C. H. Liang, "Analysis of antenna around NURBS surface with iterative MoM-PO technique," J. of Electromagn. Waves and Appl., Vol. 20, No. 12, 1667-1680, 2006.
doi:10.1163/156939306779292372        Google Scholar

9. Geng, N., A. Sullivan, and L. Carin, "Fast multipole method for scattering from 3D PEC targets situated in a half-space environment," Microwave Opt. Technol. Lett., Vol. 21, 399-405, 1999.
doi:10.1002/(SICI)1098-2760(19990620)21:6<399::AID-MOP3>3.0.CO;2-Z        Google Scholar

10. Geng, N., A. Sullivan, and L. Carin, "Fast multipole method for scattering from an arbitrary PEC target above or buried in a lossy half space," IEEE Trans. Antennas Propagat., Vol. 49, No. 5, 740-748, 2001.
doi:10.1109/8.929628        Google Scholar

11. Geng, N., A. Sullivan, and L. Carin, "Multilevel fast-multipole algorithm for scattering from conducting targets above or embeded in a lossy half space," IEEE Trans. Antennas Propagat., Vol. 38, No. 7, 1561-1573, 2000.        Google Scholar

12. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propagat Mag., Vol. 35, No. 6, 7-12, 1993.
doi:10.1109/74.250128        Google Scholar

13. Song, J. M. and W. C. Chew, "Fast multipole method solution using parametric geometry," Microwave Opt. Technol. Lett., Vol. 7, 760-765, 1994.
doi:10.1002/mop.4650071612        Google Scholar

14. Song, J. M. and W. C. Chew, "Multilevel fast multipole algorithm for solving combined field integral equations of electromagnetic scattering," Microwave Opt. Technol. Lett., Vol. 10, 14-19, 1995.
doi:10.1002/mop.4650100107        Google Scholar

15. Zhao, X. W., X. J. Dang, Y. Zhang, and C. H. Liang, "MLFMA analysis of waveguide arrays with narrow-wall slots," J. of Electromagn. Waves and Appl., Vol. 21, No. 8, 1063-1078, 2007.        Google Scholar

16. Zhao, X. W., X. J. Dang, Y. Zhang, and C. H. Liang, "The multilevel fast multipole algorithm for EMC analysis of multiple antennas on electrically large platforms," Progress In Electromagnetics Research, Vol. 69, 161-176, 2007.
doi:10.2528/PIER06121003        Google Scholar

17. Wallen, H. and J. Sarvas, "Translation procedures for broadband MLFMA," Progress In Electromagnetics Research, Vol. 55, 47-78, 2005.
doi:10.2528/PIER05021001        Google Scholar

18. Pan, X. M. and X. Q. Sheng, "A highly efficient parallel approach of multi-level fast multipole algorithm," J. of Electromagn. Waves and Appl., Vol. 20, No. 8, 1081-1092, 2006.
doi:10.1163/156939306776930321        Google Scholar

19. Li, L. and Y. Xie, "Efficient algorithm for analyzing microstrip antennas using fast-multipole algorithm combined with fixed realimage simulated method," J. of Electromagn. Waves and Appl., Vol. 20, No. 15, 2177-2188, 2006.
doi:10.1163/156939306779322521        Google Scholar

20. Ouyang, J., F. Yang, S. W. Yang, and Z. P. Nie, "Exact simulation method VSWIE+MLFMA for analysis radiation pattern of probe-feed conformal microstrip antennas and the application of synthesis radiation pattern of conformal array mounted on finite-length PEC circular cylinder with DES," J. of Electromagn. Waves and Appl., Vol. 21, No. 14, 1995-2008, 2007.
doi:10.1163/156939307783152803        Google Scholar

21. Wang, P., Y. J. Xie, and R. Yang, "Novel pre-corrected multilevel fast multipole algorithm for electrical large radiation problem," J. of Electromagn. Waves and Appl., Vol. 21, No. 13, 1733-1743, 2007.        Google Scholar

22. Wang, P. and Y. J. Xie, "Scattering and radiation problem of surface/surface junction structure with multilevel fast multipole algorithm," J. of Electromagn. Waves and Appl., Vol. 20, No. 15, 2189-2200, 2006.
doi:10.1163/156939306779322567        Google Scholar

23. Aksun, M. I., "A robust approach for the derivation of closedform Green's functions," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 5, 651-658, 1996.
doi:10.1109/22.493917        Google Scholar

24. Zhang, Y., Parallel Computation in Electromagnetics, Xidian University Press.

25. Hodges, R. E. and Y. Rahmat-Samii, "The evaluation of MFIE integrals with the use of vector triangle basis functions," Microwave Opt. Technol. Lett., Vol. 14, 9-14, 1997.
doi:10.1002/(SICI)1098-2760(199701)14:1<9::AID-MOP4>3.0.CO;2-P        Google Scholar

26. Wang, M., "Prediction for the pattern of the antenna in a complex environment," Ph.D. dissertation, 2006.        Google Scholar