1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, January-February 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
2. Pendry, J. B., A. J. Hold, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-2084, November 1999.
doi:10.1109/22.798002 Google Scholar
3. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, 4773, June 17 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184, May 1 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
5. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, October 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
6. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, April 6 2001.
doi:10.1126/science.1058847 Google Scholar
7. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Physical Review E, Vol. 64, No. 056625, 2001. Google Scholar
8. Ziolkowski, R. W. and A. D. Kipple, "Causality and double-negative metamaterials," Physical Review E, Vol. 68, 026615, Part 2, 2003. Google Scholar
9. Caloz, C., H. Okabe, T. Iwai, and T. Itoh, "Transmission line approach of left-handed (LH) materials," Proc. USNC/URSI National Radio Science Meeting, Vol. 1, 39 San Antonio, TX, June 2002.
10. Grbic, A. and G. V. Eleftheriades, "A backward-wave antenna based on negative refractive index," Proc. IEEE AP-S Int. Symp., Vol. 4, 340-343, San Antonio, TX, June 2002.
11. Iyer, A. K. and G. V. Eleftheriades, "Negative refractive index metamaterials supporting 2-D waves," Proc. IEEE MTT-S Int. Symp., Vol. 2, 1067-1070, San Antonio, TX, June 2002.
doi:10.1109/TMTT.2002.805197
12. Eleftheriades, G. V., A. K. Iyer, and P. C. Kramer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 12, December 2002.
doi:10.1063/1.1343489 Google Scholar
13. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Applied Physics Letters, Vol. 78, 489-491, 2001.
doi:10.1103/PhysRevLett.89.257401 Google Scholar
14. Pacheco, Jr., J., T. M. Grzegorczyk, B.-I. Wu, Y. Zhang, and J. A. Kong, "Power propagation in homogeneous isotropic frequency-dispersive left-handed media," Physical Review Letters, Vol. 89, 257401, 2002.
doi:10.1063/1.1408261 Google Scholar
15. Caloz, C., C.-C. Chang, and T. Itoh, "Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations," Journal of Applied Physics, Vol. 90, 5483-5486, 2001. Google Scholar
16. Ziolkowski, R. W. and A. D. Kipple, "Application of double negative materials to increase the power radiated by electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, October 2003.
doi:10.1109/LPT.2003.818950 Google Scholar
17. Xiao, S. H., L. F. Shen, and S. L. He, "A novel directional coupler utilizing a left-handed material," IEEE Photonics Technology Letters, Vol. 16, No. 1, January 2004.
doi:10.1163/156939306777442908 Google Scholar
18. Yang, R., Y.-J. Xie, P. Wang, and L. Li, "Microstrip antennas with left-handed materials substrates," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 9, 1221-1233, 2006.
doi:10.1163/156939307780749165 Google Scholar
19. Zhang, J., B. Cui, J.-Z. Gu, and X.-W. Sun, "A harmonic suppressed Wilkinson power divider using complementary split ring resonators (CSRRs)," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 811-819, 2007. Google Scholar
20. Li, Z. and T. J. Cui, "Novel waveguide directional couplers using left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1053-1062, 2007. Google Scholar
21. Guo, Y. and R. Xu, "Ultra-wideband power splitting/combining technique using zero-degree left-handed transmission lines," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1109-1118, 2007.
doi:10.1163/156939307783134425 Google Scholar
22. Yang, R., Y. Xie, D. Li, J. Zhang, and J. Jiang, "Bandwidth enhancement of microstrip antennas with metamaterial bilayered substrates," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2321-2330, 2007. Google Scholar
23. Zhang, J. and X.-W. Sun, "Harmonic suppression of branch-line and rat-race coupler using complementary split ring resonators (CSRR) cell," Progress In Electromagnetics Research Letters, Vol. 2, 73-79, 2008.
doi:10.2528/PIERL07111808 Google Scholar
24. Abdalla, M. A. and Z. Hu, "On the study of left-handed coplanar waveguide coupler on ferrite substrate," Progress In Electromagnetics Research Letters, Vol. 1, 69-75, 2008.
doi:10.1103/PhysRevB.66.045116 Google Scholar
25. Kuzmiak, V. and A. A. Maradudin, "Scattering properties of a cylinder fabricated from a left-handed material," Physical Review B, Vol. 66, 045116, 2002.
doi:10.1002/mop.10705 Google Scholar
26. Ruppin, R., "Intensity distribution inside scatterers with negative-real permittivity and permeability," Microwave and Optical Technology Letters, Vol. 36, No. 3, February 5 2003.
doi:10.1163/156939307783152777 Google Scholar
27. Wang, M. Y., J. Xu, J. Wu, Y. B. Yan, and H. L. Li, "FDTD study on scattering of metallic column covered by double-negative metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1905-1914, 2007.
doi:10.2528/PIERB07112906 Google Scholar
28. Valagiannopoulos, C. A., "Electromagnetic scattering from two eccentric metamaterial cylinders with frequency-dependent permittivities differing slightly each other," Progress In Electromagnetics Research B, Vol. 3, 23-34, 2008.
doi:10.2528/PIERB07121107 Google Scholar
29. Hady, L. K. and A. A. Kishk, "Electromagnetic scattering from conducting circular cylinder coated by metamaterials and loaded with helical strips under oblique incidence," Progress In Electromagnetics Research B, Vol. 3, 189-206, 2008.
doi:10.2528/PIERB07120803 Google Scholar
30. Oraizi, H. and A. Abdolali, "Combination of MLS, GA & CG for the reduction of RCS of multilayered cylindrical structures composed of dispersive metamaterials," Progress In Electromagnetics Research B, Vol. 3, 227-253, 2008.
doi:10.2528/PIERB07112803 Google Scholar
31. Zainud-Deen, S. H., A. Z. Botrosand, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDFD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
doi:10.1163/156939306779322620 Google Scholar
32. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322585 Google Scholar
33. Chen, H., B.-I. Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006. Google Scholar
34. Physik. Z., Vol. 9, 775, 1908.
doi:10.1098/rspa.1918.0050 Google Scholar
35. Watson, G. N., "The diffraction of electric waves by the earth," Proceedings of the Royal Society of London, Vol. 95, No. 666, 83-99, 1918.
doi:10.1119/1.1975793 Google Scholar
36. Pumplin, J., "Application of Sommerfeld-Watson transformation to an electrostatics problem," American Journal of Physics, Vol. 37, No. 7, 737-739, 1969. Google Scholar
37. Uberall, H., "Acoustic scattering from elastic cylinders and spheres: Surface waves (Watson transform) and transmitted waves," Diffusion et Diffraction, Vol. 2, No. 5, 353-387, 1985. Google Scholar
38. Wang, H.-L., Q. Wu, X.-J. He, and L.-W. Li, "Computation of wave scattering problems from a spheric body: Derivation of the new Sommerfeld-Watson transformation," Progress In Electromagnetics Research Symposium 2005, 707-710, Hangzhou, China, August 22-26 2005.
doi:10.2528/PIER07052502
39. Valagiannopoulos, C. A., "An overview of the Watson transformation presented through a simple example," Progress In Electromagnetics Research, Vol. 75, 137-152, 2007.
doi:10.1029/RS010i002p00205 Google Scholar
40. Inada, H., "Diffracted field computations by a series expansion," Radio Science, Vol. 10, 205-220, February 1975.
doi:10.1002/ecjb.4420780405 Google Scholar
41. Sasamori, T., T. Uno, and S. Adachi, "High-frequency analysis of electromagnetic scattering due to a dielectric cylinder," Electronics and Communications in Japan, Part II - Electronics, Vol. 78, No. 4, 41-55, 1995.
doi:10.1063/1.1664764 Google Scholar
42. Nussenzweig, H. M., "High-frequency scattering by a transparent sphere. 1. Direct reflection and transmission," Journal of Mathematical Physics, Vol. 10, No. 1, 82-124, January 1969.
doi:10.1016/0003-4916(65)90041-2 Google Scholar
43. Nussenzweig, H. M., "High-frequency scattering by an impenetrable sphere," Annals of Physics, Vol. 34, 23-95, 1965. Google Scholar
44. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications Inc., 1972.