Vol. 85
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-10-03
Tunable TE/TM Wave Splitter Using a Gyrotropic Slab
By
Progress In Electromagnetics Research, Vol. 85, 367-380, 2008
Abstract
A TE/TM wave splitter composed of a gyrotropic slab is proposed. We demonstrate theoretically that, when the working frequency is chosen to be within one of the two ranges, total reflection occurs at the boundary of a slab of gyrotropic medium for either TE or TM component of the incident waves. Tuning can be done by choosing the working frequency band or adjusting the applied magnetic field. Furthermore, within the TE-stop or TM-stop frequency region, if the incident angle is selected appropriately, the other polarized component of the wave is totally transmitted. And we also show that when the slab is thicker, there are more possibilities to satisfy the full-pass condition. Finite-element method simulations verified the theoretical results.
Citation
Hui Huang Yu Fan Bae-Ian Wu Jin Au Kong , "Tunable TE/TM Wave Splitter Using a Gyrotropic Slab," Progress In Electromagnetics Research, Vol. 85, 367-380, 2008.
doi:10.2528/PIER08080303
http://www.jpier.org/PIER/pier.php?paper=08080303
References

1. McCormick, F. B., et al., "Experimental investigation of a free-space optical switching network by using symmetric selfelectro-optic-effect devices," Appl. Opt., Vol. 31, 5431-5446, 1992.

2. Ojima, M., A. Saito, T. Kaku, M. Ito, Y. Tsunoda, S. Takayama, and Y. Sugita, "Compact magnetooptical disk for coded data storage," Appl. Opt., Vol. 25, 483-489, 1986.

3. Kunstmann, P. and H. J. Spitschan, "General complex amplitude addition in a polarization interferometer in the detection of pattern differences," Opt. Commun., Vol. 4, 166-168, 1971.
doi:10.1016/0030-4018(71)90236-7

4. Li, G. and A. Xu, "Analysis of the TE-pass or TM-pass metalclad polarizer with a resonant buffer layer," J. Lightwave Technol., Vol. 26, 1234-1241, 2008.
doi:10.1109/JLT.2008.917039

5. Dummer, D. J., S. G. Kaplan, L. M. Hanssen, A. S. Pine, and Y. Zong, "High-quality Brewster's angle polarizer for broadband infrared application," Appl. Opt., Vol. 37, 1194-1204, 1998.
doi:10.1364/AO.37.001194

6. Kushwaha, M. S. and P. Halevi, "Magnetoplasmons in thin films in the Voigt configuration," Phys. Rev. B, Vol. 36, 5960-5967, 1987.
doi:10.1103/PhysRevB.36.5960

7. Kushwaha, M. S. and P. Halevi, "Magnetoplasmons in thin films in the perpendicular configuration," Phys. Rev. B, Vol. 38, 12428-12435, 1988.
doi:10.1103/PhysRevB.38.12428

8. Kushwaha, M. S. and P. Halevi, "Magnetoplasma modes in thin films in the Faraday configuration," Phys. Rev. B, Vol. 35, 3879-3889, 1987.
doi:10.1103/PhysRevB.35.3879

9. Gillies, J. R. and P. Hlawiczka, "TE and TM modes in gyrotropic waveguides," J. Phys. D: Appl. Phys., Vol. 9, 1315-1322, 1976.
doi:10.1088/0022-3727/9/9/008

10. Gillies, J. R. and P. Hlawiczka, "Elliptically polarized modes in gyrotropic waveguides. II. An alternative treatment of the longitudinally magnetized case," J. Phys. D: Appl. Phys., Vol. 10, 1891-1904, 1977.
doi:10.1088/0022-3727/10/14/005

11. Hlawiczka, P., "Elliptically polarized modes in gyrotropic waveguides," J. Phys. D: Appl. Phys., Vol. 9, 1957-1965, 1976.
doi:10.1088/0022-3727/11/8/006

12. Hlawiczka, P., "A gyrotropic waveguide with dielectric boundaries: The longitudinally magnetised case," J. Phys. D: Appl. Phys., Vol. 11, 1157-1166, 1978.
doi:10.1088/0022-3727/11/14/006

13. Hlawiczka, P., "The gyrotropic waveguide with a normal applied DC field," J. Phys. D: Appl. Phys., Vol. 11, 1941-1948, 1978.
doi:10.2528/PIER06040901

14. Eroglu, A. and J. K. Lee, "Wave propagation and dispersion characteristics for a nonreciprocal electrically gyrotropic medium," Progress In Electromagnetics Research, Vol. 62, 237-260, 2006.
doi:10.1163/156939303772681442

15. Li, L. W., N. H. Lim, and J. A. Kong, "Cylindrical vector wave function representation of Green's dyadic in gyrotropic bianisotropic media," Journal of Electromagnetic Waves and Applications, Vol. 17, 1589-1591, 2003.
doi:10.1163/156939303322760272

16. Li, L. W., N. H. Lim, W. Y. Yin, and J. A. Kong, "Eigenfunctional expansion of dyadic Green's functions in gyrotropic media using cylindrical vector wave functions --- Abstract," Journal of Electromagnetic Waves and Applications, Vol. 17, 1731-1733, 2003.
doi:10.1088/0022-3727/32/4/013

17. Ivanov, S. T. and N. I. Nikolaev, "Magnetic-field effect on wave dispersion in a free semiconductor plasma slab," J. Phys. D: Appl. Phys., Vol. 32, 430-439, 1999.
doi:10.1088/0022-3727/32/4/013

18. Boardman, A., N. King, Y. Rapoport, and L. Velasco, "Gyrotropic impact upon negatively refracting surfaces," New J. Phys., Vol. 7, 1-24, 2005.
doi:10.1088/1367-2630/7/1/191

19. Zhang, M., L. W. Li, T. S. Yeo, and M. S. Leong, "Scattering by a gyrotropic bianisotropic cylinder of arbitrary cross section: An analysis using generalized multipole technique --- Abstract," Journal of Electromagnetic Waves and Applications, Vol. 17, 1049-1051, 2003.
doi:10.1163/156939303322519144

20. Yin, W. Y., L. W. Li, and M. S. Leong, "Scattering from multiple bianisotropic cylinders and their modeling of cylindrical objects of arbitrary cross-section — Abstract," Journal of Electromagnetic Waves and Applications, Vol. 14, 611-612, 2000.
doi:10.1163/156939300X01292

21. Tan, E. L. and S. Y. Tan, "Cylindrical vector wave function representations of electromagnetic fields in gyrotropic bianisotropic media," Journal of Electromagnetic Waves and Applications, Vol. 13, 1461-1476, 1999.
doi:10.1163/156939399X00501

22. Bass, F. and L. Resnick, "Spatial and temporal rotation of the polarization plane of electromagnetic waves reflected from and transmitted through a gyrotropic plate," Journal of Electromagnetic Waves and Applications, Vol. 17, 1131-1137, 2003.
doi:10.1163/156939303322519739

23. Censor, D. and M. D. Fox, "Polarimetry in the presence of various external reflection and retrodirection mirroring mechanisms, for chiral and gyrotropic media," Journal of Electromagnetic Waves and Applications, Vol. 11, 297-313, 1997.
doi:10.1163/156939397X00242

24. Huang, H., Y. Fan, B.-I. Wu, F. Kong, and J. A. Kong, "Surface modes at the interfaces between isotropic media and uniaxial plasma," Progress In Electromagnetics Research, Vol. 76, 1-14, 2007.
doi:10.2528/PIER07062005

25. Huang, H., Y. Fan, F. Kong, B.-I. Wu, and J. A. Kong, "Influence of external magnetic field on a symmetrical gyrotropic slab in terms of Goos-Hanchen shifts," Progress In Electromagnetics Research, Vol. 82, 137-150, 2008.
doi:10.2528/PIER08022605

26. Kong, F., K. Li, H. Huang, B.-I. Wu, and J. A. Kong, "Analysis of the surface magnetoplasmon modes in the semiconductor slit waveguide at terahertz frequencies," Progress In Electromagnetics Research, Vol. 82, 257-270, 2008.
doi:10.2528/PIER08031224

27. Huang, H., Y. Fan, B.-I. Wu, and J. A. Kong, "Positively and negatively large Goos-Hanchen lateral displacements from a symmetric gyrotropic slab," Appl. Phys. A: Mater., 2008.

28. Brion, J. J., R. F. Wallis, A. Hartstein, and E. Burstein, "Theory of surface magnetoplasmons in semiconductors," Phys. Rev. Lett., Vol. 28, 1455-1458, 1972.
doi:10.1103/PhysRevLett.28.1455

29. Remer, L., E. Mohler, W. Grill, and B. Luthi, "Nonreciprocity in the optical reflection of magnetoplasmas," Phys. Rev. B, Vol. 30, 3277-3282, 1984.
doi:10.1103/PhysRevB.30.3277