Vol. 85
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-09-17
EM Scattering from a Long Dielectric Circular Cylinder
By
Progress In Electromagnetics Research, Vol. 85, 39-67, 2008
Abstract
A new iterative technique based on the T-matrix approach is proposed for the electromagnetic scattering by dielectric cylinders, in particular cylinders with large aspect ratios. For such cases the conventional T-matrix approach fails. We use hypothetic surfaces to divide a cylinder into a cluster of N identical sub-cylinder, for each the T matrix can be directly calculated. Since any two neighboring subcylinder are touching via the division interface, the conventional multiscatterer equation method is not directly applicable. The coupling among sub-cylinder and boundary conditions at the interfaces are taken care of in our approach. The validity of the proposed method is demonstrated through agreement between theoretical predictions and numerical simulations as well as measurements for scattering from dielectric circular cylinders with finite length. The results clearly demonstrate that the new iterative technique can extend regular T-matrix approach to solve cylindrical cases with large aspect ratio.
Citation
Wen-Zhe Yan, Yang Du, Hao Wu, Dawei Liu, and Bae-Ian Wu, "EM Scattering from a Long Dielectric Circular Cylinder," Progress In Electromagnetics Research, Vol. 85, 39-67, 2008.
doi:10.2528/PIER08081106
References

1. Ulaby, F. T., K. Sarabandi, K. McDonald, M. Whitt, and M. C. Dobson, "Michigan microwave canopy scattering model," Int. J. Remote Sensing, Vol. 38, No. 7, 2097-2128, 2000.        Google Scholar

2. Yueh, S. H., J. A. Kong, J. K. Jao, R. T. Shin, and T. L. Toan, "Branching model for vegetation," IEEE Trans. Geosci. Remote Sensing, Vol. 30, 390-402, 1992.
doi:10.1109/36.134088        Google Scholar

3. Chen, Z., L. Tsang, and G. Zhang, "Appication of stochastic lindenmayer systems to the study of collective and cluster scattering in microwave remote sensing of vegetation," Progress In Electromagnetics Research, Vol. 14, 233-277, 1966.        Google Scholar

4. Chiu, T. and K. Sarabandi, "Electromagnetic scattering from short branching vegetation," IEEE Trans. Geosci. Remote Sensing, Vol. 38, No. 2, 911-925, 2000.
doi:10.1109/36.841974        Google Scholar

5. Du, Y., Y. L. Luo, W. Z. Yan, and J. A. Kong, "An electromagnetic scattering model for soybean canopy," Progress In Electromagnetics Research, Vol. 79, 209-223, 2008.
doi:10.2528/PIER07101603        Google Scholar

6. Jin, J. M., V. V. Liepa, and C. T. Tai, "A volume-surface integral equation for electromagnetic scattering by inhomogeneous cylinders," Journal of Electromagnetic Waves and Applications, Vol. 2, 573-588, 1988.
doi:10.1163/156939388X00170        Google Scholar

7. Elsherbeni, A. Z., M. Hamid, and G. Tian, "Iterative scattering of a Gaussian beam by an array of circular conducting and dielectric cylinders," Journal of Electromagnetic Waves and Applications, Vol. 7, 1323-1342, 1993.
doi:10.1163/156939393X00507        Google Scholar

8. Konistis, K. and J. L. Tsalamengas, "Plane wave scattering by an array of bianisotropic cylinders enclosed by another one in an unbounded bianisotropic space: Oblique incidence," Journal of Electromagnetic Waves and Applications, Vol. 11, 1073-1090, 1997.
doi:10.1163/156939397X01016        Google Scholar

9. Naqvi, Q. A. and A. A. Rizvi, "Low contrast circular cylinder buried in a grounded dielectric layer," Journal of Electromagnetic Waves and Applications, Vol. 12, 1527-1536, 1998.
doi:10.1163/156939398X00458        Google Scholar

10. Wang, L. F., J. A. Kong, K. H. Ding, T. Le Toan, F. Ribbes, and N. Floury, "Electromagnetic scattering model for rice canopy based on Monte Carlo simulation," Progress In Electromagnetics Research, Vol. 52, 153-171, 2005.
doi:10.2528/PIER04080601        Google Scholar

11. Arslan, A. N., J. Pulliainen, and M. Hallikainen, "Observations of L- and C-band backscatter and a semi-empirical backscattering model approach from a forest-snow-ground system," Progress In Electromagnetics Research, Vol. 56, 263-281, 2006.
doi:10.2528/PIER05062701        Google Scholar

12. Ruppin, R., "Scattering of electromagnetic radiation by a perfect electromagnetic conductor cylinder," Journal of Electromagnetic Waves and Applications, Vol. 20, 1853-1860, 2006.
doi:10.1163/156939306779292219        Google Scholar

13. Hamid, A. K., "Multi-dielectric loaded axially slotted antenna on circular or elliptic cylinder," Journal of Electromagnetic Waves and Applications, Vol. 20, 1259-1271, 2007.        Google Scholar

14. Henin, B. H., A. Z. Elsherbeni, and M. H. Al Sharkawy, "Oblique incidence plane wave scattering from an array of circular dielectric cylinders," Progress In Electromagnetics Research, Vol. 68, 261-279, 2007.
doi:10.2528/PIER06083102        Google Scholar

15. Zhang, Y. J. and E. P. Li, "Fast multipole accelerated scattering matrix method for multiple scattering of a large number of cylinders," Progress In Electromagnetics Research, Vol. 72, 105-126, 2007.
doi:10.2528/PIER07030503        Google Scholar

16. Valagiannopoulos, C. A., "Electromagnetic scattering from two eccentric metamaterial cylinders with frequency-dependent permittivities differing slightly each other," Progress In Electromagnetics Research B, Vol. 3, 23-34, 2008.
doi:10.2528/PIERB07112906        Google Scholar

17. Illahi, A., M. Afzaal, and Q. A. Naqvi, "Scattering of dipole field by a perfect electromagnetic conductor cylinder," PIER Letters, Vol. 4, 43-53, 2008.
doi:10.2528/PIERL08051601        Google Scholar

18. Svezhentsev, A. Y., "Some far field features of cylindrical microstrip antenna on an electrically small cylinder," Progress In Electromagnetics Research B, Vol. 7, 223-244, 2008.
doi:10.2528/PIERB08032201        Google Scholar

19. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from a perfect electromagnetic conductor cylinder buried in a dielectric half-space," Progress In Electromagnetics Research, Vol. 78, 25-38, 2008.
doi:10.2528/PIER07081601        Google Scholar

20. Yeh, C., R. Woo, A. Ishimaru, and J. Armstrong, "Scattering by single ice needles and plates at 30 GHz," Radio Sci., Vol. 17, 1503-1510, 1982.
doi:10.1029/RS017i006p01503        Google Scholar

21. Schiffer, R. and K. O. Thielheim, "Light scattering by dielectric needles and disks," J. Appl. Phys., Vol. 50, No. 4, 2476-2483, 1979.
doi:10.1063/1.326257        Google Scholar

22. Karam, M. A. and A. K. Fung, "Electromagnetic wave scattering from some vegetation samples," IEEE Trans. Geosci. Remote Sensing, Vol. 26, 799-808, 1988.
doi:10.1109/36.7711        Google Scholar

23. Karam, M. A. and A. K. Fung, "Electromagnetic wave scattering from some vegetation samples," Int. J. Remote Sensing, Vol. 9, 1109-1134, 1988.
doi:10.1080/01431168808954918        Google Scholar

24. Stiles, J. M. and K. Sarabandi, "A scattering model for thin dielectric cylinders of arbitrary crosssection and electrical length," IEEE Trans. Antennas Propag., Vol. 44, 260-266, 1996.
doi:10.1109/8.481656        Google Scholar

25. Waterman, P. C., "Matrix formulation of electromagnetic scattering," Proc. IEEE, Vol. 53, 805-811, 1956.        Google Scholar

26. Mishchenko, M. I. and L. D. Travis, "T-matrix computations of light scattering by large spheroidal particles," Opt. Commun., Vol. 109, 16-21, 1994.
doi:10.1016/0030-4018(94)90731-5        Google Scholar

27. Roussel, H., W. C. Chew, F. Jouvie, and W. Tabbara, "Electromagnetic scattering from dielectric and magnetic gratings of fibers: A T-matrix solution," Journal of Electromagnetic Waves and Applications, Vol. 10, 109-127, 1996.
doi:10.1163/156939396X00252        Google Scholar

28. Mishchenko, M. I., L. D. Travis, and A. Macke, "Scattering of light by polydisperse, randomly oriented, finite circular cylinders," Appl. Opt., Vol. 35, 4927-4840, 1996.
doi:10.1364/AO.35.004927        Google Scholar

28. Mishchenko, M. I., L. D. Travis, and A. Macke, "Scattering of light by polydisperse, randomly oriented, finite circular cylinders," Appl. Opt., Vol. 35, 4927-4940, 1996.
doi:10.1364/AO.35.004927        Google Scholar

29. Mishchenko, M. I., L. D. Travis, and D. W. Mackowski, "T-matrix computations of light scattering by nonspherical particles: A review," J. Quant. Spectrosc. Radiat. Transfer, Vol. 55, 535-575, 1996.
doi:10.1016/0022-4073(96)00002-7        Google Scholar

30. Wielaard, D. J., M. I. Mishchenko, A. Macke, and B. E. Carlson, "Improved T-matrix computations for large, nonabsorbing and weakly absorbing nonspherical particles and comparison with geometrical optics approximation," Appl. Opt., Vol. 36, 4305-4313, 1997.
doi:10.1364/AO.36.004305        Google Scholar

31. Mishchenko, M. I., "Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation," Appl. Opt., Vol. 39, 1026-1031, 2000.
doi:10.1364/AO.39.001026        Google Scholar

32. Barber, P. W., "Resonance electromagnetic absorption by nonspherical dielectric objects," IEEE Trans. Microwave Theory Tech., Vol. 25, 373-371, 1954.        Google Scholar

33. Iskander, M., A. Lakhtakia, and C. Durney, "A new procedure for improving the solution stability and extending the frequency range of the EBCM," IEEE Trans. Antennas Propag., Vol. 31, 317-324, 1983.
doi:10.1109/TAP.1983.1143050        Google Scholar

34. Kahnert, F. M., "Numerical methods in electromagnetic scattering theory," J. Quant. Spectrosc. Radiat. Transfer, Vol. 79–80, No. 2, 755-824, 2003.        Google Scholar

35. Al-Rizzo, H. M. and J. M. Tranquilla, "Electromagnetic wave scattering by highly elongated and geometrically composite objects of large size parameters: The generalized multipole technique," Appl. Opt., Vol. 34, 3502-3521, 1995.        Google Scholar

36. Doicu, A. and T. Wriedt, "Calculation of the T matrix in the nullfield method with discrete sources," J. Opt. Soc. Am., Vol. 16, 2539-2544, 1999.
doi:10.1364/JOSAA.16.002539        Google Scholar

37. Eremina, E., Y. Eremin, and T.Wriedt, "Extension of the discrete sources method to light scattering by highly elongated finite cylinders," J. Modern Opt., Vol. 51, No. 3, 423-435, 2004.
doi:10.1080/09500340408235534        Google Scholar

38. Pulbere, S. and T. Wriedt, "Light scattering by cylindrical fibers with high aspect ratio using the null-field method with discrete sources," Part. Part. Syst. Charact., Vol. 21, 213-218, 2004.
doi:10.1002/ppsc.200400864        Google Scholar

39. Wriedt, T., R. Schuh, and A. Doicu, "Scattering by aggregated fibres using a multiple scattering T-matrix approach," Part. Part. Syst. Charact., Vol. 25, 74-83, 2008.
doi:10.1002/ppsc.200700022        Google Scholar

40. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley Interscience, 1985.

41. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves — Numerical Simulations, John Wiley & Sons, Inc., 2001.

42. Allan, L. E. and G. M. McCormick, "Measurements of the backscatter matrix of dielectric bodies," IEEE Trans. Antennas Propag., Vol. 28, No. 2, 166-169, 1980.
doi:10.1109/TAP.1980.1142309        Google Scholar

43. Friedman, B. and J. Russek, "Addition theorems for spherical waves," Q. Appl. Math., Vol. 12, 13-23, 1954.        Google Scholar

44. Stein, S., "Addition theorems for spherical ware functions," Q. Appl. Math., Vol. 19, 15-24, 1961.        Google Scholar

45. Gaunt, J. A., "On the triplets of helium," Philos. Trans. R. Soc. Lond. A, Vol. 228, 151-196, 1929.        Google Scholar

46. Brunning, J. H. and Y. T. Lo, "Multiple scattering of EM waves by spheres. Part I and II," IEEE Trans. Antennas Propag., Vol. 19, No. 3, 378-400, 1971.
doi:10.1109/TAP.1971.1139944        Google Scholar

47. Mackowski, D. W., "Analysis of radiative scattering for multiple sphere configurations," Proc. R. Soc. Lond. A, 599-614, 1991.        Google Scholar

48. Chew, W. C., "Recurrence relations for three-dimensional scalar addition theorem," J. Electromagnetic Waves Appl., Vol. 6, 133-142, 1992.        Google Scholar

49. Cruzan, O. R., "Translational addition theorems for spherical vector ware functions," Q. Appl. Math., Vol. 20, 33-39, 1962.        Google Scholar

50. Tsang, L. and J. A. Kong, "Effective propagation constant for coherent electromagnetic waves in media embedded with dielectric scatterers," J. Appl. Phys., Vol. 11, 7162-7173, 1982.
doi:10.1063/1.331611        Google Scholar

51. Koc, S., J. M. Song, and W. C. Chew, "Error analysis for the numerical evaluation of the diagonal forms of the scalar spherical addition theorem," SIAM J. Numer. Anal., Vol. 36, No. 3, 906-921, 1999.
doi:10.1137/S0036142997328111        Google Scholar

52. Mishchenko, M. I., "Light scattering by size-shape distributions of randomly oriented axially symmetric particles of size comparable to a wavelength ," Appl. Opt., Vol. 32, 4652-4666, 1993.        Google Scholar

53. Xu, Y. L., "Electromagnetic scattering by an aggregate of spheres ," Appl. Opt., Vol. 34, 4573-4588, 1995.        Google Scholar