Vol. 88
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-12-16
The Three Exact Components of the Magnetic Field Created by a Radially Magnetized Tile Permanent Magnet
By
Progress In Electromagnetics Research, Vol. 88, 307-319, 2008
Abstract
This paper presents the exact analytical formulation of the three components of the magnetic field created by a radially magnetized tile permanent magnet. These expressions take both the magnetic pole surface densities and the magnetic pole volume density into account. So, this means that the tile magnet curvature is completely taken into account. Moreover, the magnetic field can be calculated exactly in any point of the space, should it be outside the tile magnet or inside it. Consequently, we have obtained an accurate 3D magnetic field as no simplifying assumptions have been used for calculating these three magnetic components. Thus, this result is really interesting. Furthermore, the azimuthal component of the field can be determined without any special functions. In consequence, its computational cost is very low which is useful for optimization purposes. Besides, all the other expressions obtained are based on elliptic functions or special functions whose numerical calculation is fast and robust and this allows us to realize parametric studies easily. Eventually, we show the interest of this formulation by applying it to one example: the calculation and the optimization of alternate magnetization magnet devices. Such devices are commonly used in various application fields: sensors, motors, couplings, etc. The point is that the total field is calculated by using the superposition theorem and summing the contribution to the field of each tile magnet in any point of the space. This approach is a good alternative to a finite element method because the calculation of the magnetic field is done without any simplifying assumption.
Citation
Romain Ravaud Guy Lemarquand Valerie Lemarquand Claude Depollier , "The Three Exact Components of the Magnetic Field Created by a Radially Magnetized Tile Permanent Magnet," Progress In Electromagnetics Research, Vol. 88, 307-319, 2008.
doi:10.2528/PIER08112708
http://www.jpier.org/PIER/pier.php?paper=08112708
References

1. Babic, S. and C. Akyel, "Improvement of the analytical calculation of the magnetic field produced by permanent magnet rings," Progress In Electromagnetics Research, Vol. 5, 71-82, 2008.

2. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Analytical calculation of the magnetic field created by permanent-magnet rings," IEEE Trans. Magn., Vol. 44, No. 8, 1982-1989, 2008.
doi:10.1109/TMAG.2008.923096

3. Selvaggi, J., S. Salon, O. M. Kwon, and M. Chari, "Computation of the three-dimensional magnetic field from solid permanent-magnet bipolar cylinders by employing toroidal harmonics," IEEE Trans. Magn., Vol. 43, No. 10, 3833-3839, 2007.
doi:10.1109/TMAG.2007.902995

4. Azzerboni, B. and G. Saraceno, "Three-dimensional calculation of the magnetic field created by current-carrying massive disks," IEEE Trans. Magn., Vol. 34, No. 5, 2601-2604, 1998.
doi:10.1109/20.717601

5. Conway, J., "Inductance calculations for noncoaxial coils using bessel functions," IEEE Trans. Magn., Vol. 43, No. 3, 1023-1034, 2007.
doi:10.1109/TMAG.2006.888565

6. Rakotoarison, H. L., J. P. Yonnet, and B. Delinchant, "Using coulombian approach for modeling scalar potential and magnetic field of a permanent magnet with radial polarization," IEEE Trans. Magn., Vol. 43, No. 4, 1261-1264, 2007.
doi:10.1109/TMAG.2007.892316

7. Durand, E., "Electrostatique," Masson Editeur, Paris, France, Vol. 1, 248-251, 1964.

8. Babic, S. and C. Akyel, "Magnetic force calculation between thin coaxial circular coils in air," IEEE Trans. Magn., Vol. 44, No. 4, 445-452, 2008.
doi:10.1109/TMAG.2007.915292

9. Babic, S., C. Akyel, and S. Salon, "New procedures for calculating the mutual inductance of the system: Filamentary circular coilmassive circular solenoid," IEEE Trans. Magn., Vol. 39, No. 3, 1131-1134, 2003.
doi:10.1109/TMAG.2003.810550

10. Babic, S., C. Akyel, S. Salon, and S. Kincic, "New expressions for calculating the magnetic field created by radial current in massive disks," IEEE Trans. Magn., Vol. 38, 497-500, 2002.
doi:10.1109/20.996131

11. Babic, S., C. Akyel, S. Salon, and S. Kincic, "New expressions for calculating the magnetic field created by radial current in massive disks," IEEE Trans. Magn., Vol. 38, No. 2, 497-500, 2002.
doi:10.1109/20.996131

12. Babic, S., S. Salon, and C. Akyel, "The mutual inductance of two thin coaxial disk coils in air," IEEE Trans. Magn., Vol. 40, No. 2, 822-825, 2004.
doi:10.1109/TMAG.2004.824810

13. Conway, J., "Noncoaxial inductance calculations without the vector potential for axisymmetric coils and planar coils," IEEE Trans. Magn., Vol. 44, No. 10, 453-462, 2008.
doi:10.1109/TMAG.2008.917128

14. Furlani, E. P., S. Reznik, and A. Kroll, "A three-dimensional field solution for radially polarized cylinders," IEEE Trans. Magn., Vol. 31, No. 1, 844-851, 1995.
doi:10.1109/20.364587

15. Furlani, E., "Field analysis and optimization of ndfeb axial field permanent magnet motors," IEEE Trans. Magn., Vol. 33, No. 5, 3883-3885, 1997.
doi:10.1109/20.619603

16. Furlani, E. and M. Knewston, "A three-dimensional field solution for permanent-magnet axial-field motors," IEEE Trans. Magn., Vol. 33, No. 1, 2322-2325, 2008.

17. Furlani, E. P., Permanent Magnet and Electromechanical Devices: Materials, Analysis and Applications, 235-245, Academic Press, 2001.

18. Furlani, E. P., "A two-dimensional analysis for the coupling of magnetic gears," IEEE Trans. Magn., Vol. 33, No. 3, 2317-2321, 1997.
doi:10.1109/20.573848

19. Mayergoyz, D. and E. P. Furlani, "The computation of magnetic fields of permanent magnet cylinders used in the electrophotographic process," J. Appl. Phys., Vol. 73, No. 10, 5440-5442, 1993.
doi:10.1063/1.353709

20. Azzerboni, B. and E. Cardelli, "Magnetic field evaluation for disk conductors," IEEE Trans. Magn., Vol. 29, No. 6, 2419-2421, 1993.
doi:10.1109/20.280997

21. Azzerboni, B., E. Cardelli, M. Raugi, A. Tellini, and G. Tina, "Magnetic field evaluation for thick annular conductors," IEEE Trans. Magn., Vol. 29, No. 3, 2090-2094, 1993.
doi:10.1109/20.211324

22. Yonnet, J. P., "Passive magnetic bearings with permanent magnets," IEEE Trans. Magn., Vol. 14, No. 5, 803-805, 1978.
doi:10.1109/TMAG.1978.1060019

23. Yonnet, J. P., "Permanent magnet bearings and couplings," IEEE Trans. Magn., Vol. 17, No. 1, 1169-1173, 1981.
doi:10.1109/TMAG.1981.1061166

24. Yonnet, J. P., Rare-earth Iron Permanent Magnets, Ch. Magnetomechanical devices, Oxford Science Publications, 1996.

25. Blache, C. and G. Lemarquand, "Linear displacement sensor with hight magnetic field gradient," Journal of Magnetism and Magnetic Materials, Vol. 104, 1106-1108, 1992.
doi:10.1016/0304-8853(92)90508-L

26. Blache, C. and G. Lemarquand, "New structures for linear displacement sensor with hight magnetic field gradient," IEEE Trans. Magn., Vol. 28, No. 5, 2196-2198, 1992.
doi:10.1109/20.179441

27. Zhu, Z. and D. Howe, "Analytical prediction of the cogging torque in radial-field permanent magnet brushless motors," IEEE Trans. Magn., Vol. 28, No. 2, 1371-1374, 1992.
doi:10.1109/20.123947

28. Wang, J., G. W. Jewell, and D. Howe, "Design optimisation and comparison of permanent magnet machines topologies," IEE Proc. Elect. Power Appl., Vol. 148, 456-464, 2001.
doi:10.1049/ip-epa:20010512

29. Halbach, K., "Design of permanent multiple magnets with oriented rec material," Nucl. Inst. Meth., Vol. 169, 1-10, 1980.
doi:10.1016/0029-554X(80)90094-4

30. Abele, M., J. Jensen, and H. Rusinek, "Generation of uniform high fields with magnetized wedges," IEEE Trans. Magn., Vol. 33, No. 5, 3874-3876, 1997.
doi:10.1109/20.619600

31. Aydin, M., Z. Zhu, T. Lipo, and D. Howe, "Minimization of cogging torque in axial-flux permanent-magnet machines: Design concepts," IEEE Trans. Magn., Vol. 43, No. 9, 3614-3622, 2007.
doi:10.1109/TMAG.2007.902818

32. Marinescu, M. and N. Marinescu, "Compensation of anisotropy effects in flux-confining permanent-magnet structures," IEEE Trans. Magn., Vol. 25, No. 5, 3899-3901, 1989.
doi:10.1109/20.42470

33. Akoun, G. and J. P. Yonnet, "3D analytical calculation of the forces exerted between two cuboidal magnets," IEEE Trans Magn., Vol. 20, No. 5, 1962-1964, 1984.
doi:10.1109/TMAG.1984.1063554

34. Yong, L., Z. Jibin, and L. Yongping, "Optimum design of magnet shape in permanent-magnet synchronous motors," IEEE Trans. Magn., Vol. 39, No. 11, 3523-4205, 2003.
doi:10.1109/TMAG.2003.819462

35. Lemarquand, G. and V. Lemarquand, "Annular magnet position sensor," IEEE. Trans. Magn., Vol. 26, No. 5, 2041-2043, 1990.
doi:10.1109/20.104612

36. Lemarquand, G., "A variable reluctance sensor," IEEE Trans. Magn., Vol. 25, No. 5, 3827-3829, 1989.
doi:10.1109/20.42446

37. http://www.univ-lemans.fr/∼glemar, .
doi:10.1109/20.42446