Vol. 89
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-01-15
The Role of the Impedivity in the Magnetotelluric Response
By
Progress In Electromagnetics Research, Vol. 89, 225-253, 2009
Abstract
We study the influence of the resistivity frequency dispersion effects on the magnetotelluric (MT) response. Impedivity is the term used to indicate the frequency dependent resistivity in rocks. The impedivity functions, used in this paper, have been derived from the general solution of the motion equation of a charge carrier, discussed in a previous paper. A 1D three-layered earth section, with the second layer assumed to be dispersive, is considered to analyze the distortions due to dispersion on the modulus and phase of the MT responses on the earth's free surface. The MT responses of the section, where the dispersive layer is attributed an impedivity function describing at first a positive, then a negative and finally a resonant dispersion model, are computed for various combines of the dispersion parameters. A general conclusion is that the dispersion effects can strongly influence the MT response either in recognizable or in subtle forms. In the former case, the distortions appear as either steeply rising and/or descending curve branches or spike-like deltas, not compatible with a dispersion-free section. In the latter case, instead, the MT curves preserve the typical behavior for a dispersion-free section, and may thus erroneously be modeled by a section, where the dispersive layer is totally suppressed. In both case, disregarding the distortion effects may lead to misleading conclusions as to the physical properties of the surveyed structures.
Citation
R. Esposito, and Domenico Patella, "The Role of the Impedivity in the Magnetotelluric Response," Progress In Electromagnetics Research, Vol. 89, 225-253, 2009.
doi:10.2528/PIER08121203
References

1. Ageev, V. V. and B. S. Svetov, "The influence of rock polarizability on electromagnetic soundings," Izvestia RAS, Physics of the Solid Earth, Vol. 35, 16-24, 1999.

2. Avdeev, D. B. and A. D. Avdeeva, "A rigorous three-dimensional magnetotelluric inversion," Progress In Electromagnetics Research, Vol. 62, 41-48, 2006.
doi:10.2528/PIER06041205

3. Balanis, C. A., Advanced Engineering Electromagnetics, J. Wiley & Sons, 1989.

4. Bertin, J. and J. Loeb, Experimental and Theoretical Aspects of Induced Polarization, Gebruder-Borntrager, 1976.

5. Cole, K. S. and R. H. Cole, "Dispersion and absorption in dielectrics," J. Chem. Phys., Vol. 9, 341-351, 1941.
doi:10.1063/1.1750906

6. Coppola, B., R. Di Maio, I. Marini, A. Merla, D. Patella, G. Pulelli, F. M. Rossi, and A. Siniscalchi, "Study of the Simplon area geothermal anomaly in the frame of a transalpine deep railway tunnel feasibility project," Underground Transportation Infrastructures, J. L. Reith (ed.), 93-102, Balkema, Rotterdam, 1993.

7. Debye, P., Polar Molecules, Chemical Catalogue Company, 1928.

8. Di Maio, R., D. Patella, and A. Siniscalchi, "Sul problema del riconoscimento di uno strato elettricamente polarizzabile mediante misure magnetotelluriche," Atti del II Convegno di Geomagnetismo ed Aeronomia, A. Meloni and B. Zolesi (ed.), 239-250, 1991.

9. Di Maio, R., P. Mauriello, D. Patella, Z. Petrillo, S. Piscitelli, A. Siniscalchi, and M. Veneruso, "Self-potential, geoelectric and magnetotelluric studies in Italian active volcanic areas," Ann. Geofis., Vol. 40, 519-537, 1997.

10. Di Maio, R., D. Patella, Z. Petrillo, A. Siniscalchi, G. Cecere, and P. de Martino, "Application of electric and electromagnetic methods to the study of the Phlegrean Fields caldera," Ann. Geofis., Vol. 43, 375-390, 2000.

11. Fink, J. B., E. O. McAlister, B. K. Sternberg, W. G. Wieduwilt, and S. H. Ward, Induced Polarization: Applications and Case Histories, Investigations in Geophysics, Vol. 4, Society of Exploration Geophysicists, Tulsa, Oklahoma, 1990.

12. Giammetti, S., D. Patella, A. Siniscalchi, and A. Tramacere, "The Siena Graben: Combined interpretation of DES and MT soundings," Ann. Geofis., Vol. 39, 189-200, 1996.

13. Ivashov, S. I., I. A. Vasiliev, T. D. Bechtel, and C. Snapp, "Comparison between impulse and holographic subsurface radar for NDT of space vehicle structural materials," PIERS Online, Vol. 3, 658-661, 2007.
doi:10.2529/PIERS061004045944

14. Kaufman, A. A. and G. V. Keller, The Magnetotelluric Sounding Method, Elsevier, 1981.

15. Manzanares-Martinez, J. and J. Gaspar-Armenta, "Direct integration of the constitutive relations for modelling dispersive metamaterials using the finite difference time-domain technique," Journal of Electromagnetic Waves and Applications, Vol. 21, 2297-2310, 2007.
doi:10.1163/156939307783134452

16. Mauriello, P. and D. Patella, "Localization of magnetic sources underground by a probability tomography approach," Progress In Electromagnetics Research M, Vol. 3, 27-56, 2008.
doi:10.2528/PIERM08050504

17. Mauriello, P. and D. Patella, "Resistivity tensor probability tomography," Progress In Electromagnetics Research B, Vol. 8, 129-146, 2008.
doi:10.2528/PIERB08051604

18. Mauriello, P. and D. Patella, "Geoelectrical anomalies imaged by polar and dipolar probability tomography," Progress In Electromagnetics Research, Vol. 87, 63-88, 2008.
doi:10.2528/PIER08092201

19. Mauriello, P., D. Patella, and A. Siniscalchi, "The magnetotelluric response over two-dimensional media with resistivity frequency dispersion," Geophys. Prosp., Vol. 44, 789-818, 1996.
doi:10.1111/j.1365-2478.1996.tb00174.x

20. Mauriello, P., D. Patella, Z. Petrillo, and A. Siniscalchi, "An integrated magnetotelluric study of the Mt. Etna volcanic structur," Ann. Geofis., Vol. 43, 325-342, 2000.

21. Mauriello, P., D. Patella, Z. Petrillo, A. Siniscalchi, T. Iuliano, and C. Del Negro, "A geophysical study of the Mount Etna volcanic area," Mt. Etna: Volcano Laboratory, Vol. 143, A. Bonaccorso, S. Calvari, M. Coltelli, C. Del Negro, and S. Falsaperla (eds.), 273-291, American Geophysical Union, Geophysical Monograph Series, 2004.

22. Nishimoto, M., S. Ueno, and Y. Kimura, "Feature extraction from GPR data for identification of landmine-like objects under rough ground surface," Journal of Electromagnetic Waves and Applications, Vol. 20, 1577-1586, 2006.
doi:10.1163/156939306779292318

23. Patella, D., "Tutorial: Interpretation of magnetotelluric measurements over an electrically dispersive one-dimensional earth," Geophys. Prosp., Vol. 35, 1-11, 1987.
doi:10.1111/j.1365-2478.1987.tb00799.x

24. Patella, D., "I principi metodologici della magnetotellurica su mezzi generalmente dispersivi," Ann. Geofis., Vol. 36, 147-160, 1993.

25. Patella, D., "On the role of the J-E constitutive relationship in applied geoelectromagnetism," Ann. Geophys., Vol. 46, 589-597, 2003.

26. Patella, D., "Modelling electrical dispersion phenomena in earth materials," Ann. Geophys., Vol. 51, 2008.

27. Patella, D., A. Tramacere, R. Di Maio, and A. Siniscalchi, "Experimental evidence of resistivity frequency-dispersion in magnetotellurics in the Newberry (Oregon), Snake River Plain (Idaho) and Campi Flegrei (Italy) volcano-geothermal areas," J. Volcanol. Geoth. Res., Vol. 48, 61-75, 1991.
doi:10.1016/0377-0273(91)90033-V

28. Pellerin, L., J. M. Johnston, and G. W. Hohmann, "A numerical evaluation of electromagnetic methods in geothermal exploration," Geophysics, Vol. 61, 121-137, 1996.
doi:10.1190/1.1443931

29. Pelton, W. H., S. H. Ward, P. G. Hallof, W. R. Sill, and P. H. Nelson, "Mineral discrimination and removal of inductive coupling with multi-frequency IP," Geophysics, Vol. 43, 588-603, 1978.
doi:10.1190/1.1440839

30. Pelton, W. H., W. R. Sill, and B. D. Smith, "Interpretation of complex resistivity and dielectric data, Part I," Geophys. Trans., Vol. 29, 297-330, 1983.

31. Prosvirnin, S. L. and S. Zouhdi, "On the effective constitutive parameters of metal-dielectric arrays of complex-shaped particles," Journal of Electromagnetic Waves and Applications, Vol. 20, 583-598, 2006.
doi:10.1163/156939306776137818

32. Razevig, V. V., S. I. Ivashov, A. P. Sheyko, I. A. Vasilyev, and A. V. Zhuravlev, "An example of holographic radar using at restoration works of historical building," Progress In Electromagnetics Research Letters, Vol. 1, 173-179, 2008.
doi:10.2528/PIERL07120603

33. Seigel, H. O., "Mathematical formulation and type curves for induced polarization," Geophysics, Vol. 24, 547-565, 1959.
doi:10.1190/1.1438625

34. Sjoberg, D., "Exact and asymptotic dispersion relations for homogenization of stratified media with two phases," Journal of Electromagnetic Waves and Applications, Vol. 20, 781-792, 2006.
doi:10.1163/156939306776143460

35. Stoyer, C. H., "Consequences of induced polarization in magnetotelluric interpretation," Pure and Appl. Geophys., Vol. 114, 435-449, 1976.
doi:10.1007/BF00876943

36. Sumner, J. S., Principles of Induced Polarization for Geophysical Exploration, Elsevier, 1976.

37. Svetov, B. S. and V. V. Ageev, "High resolution electromagnetic methods and low frequency dispersion of rock conductivity," Ann. Geofis., Vol. 42, 699-713, 1999.

38. Uduwawala, D., "Modeling and investigation of planar parabolic dipoles for GPR applications: A comparison with bow-tie using FDTD," Journal of Electromagnetic Waves and Applications, Vol. 20, 227-236, 2006.
doi:10.1163/156939306775777224

39. Van den Bosch, I., S. Lambot, M. Acheroy, I. Huynen, and P. Druyts, "Accurate and efficient modelling of monostatic GPR signal of dielectric targets buried in stratified media," Journal of Electromagnetic Waves and Applications, Vol. 20, 283-290, 2006.
doi:10.1163/156939306775701704

40. Wait, J. R., Overvoltage Research and Geophysical Applications, Pergamon, 1959.

41. Wait, J. R., Geo-electromagnetism, Academic Press, 1982.

42. Zhdanov, M. S. and G. V. Keller, The Geoelectrical Methods in Geophysical Exploration, Elsevier, 1994.