1. Fear, E. C., P. M. Meaney, and M. A. Stuchly, "Microwaves for breast cancer detection?," IEEE Potentials, Vol. 22, No. 1, 12-18, 2003.
doi:10.1109/MP.2003.1180933 Google Scholar
2. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumour detection," IEEE Trans. Microwave Theory and Tech., Vol. 51, No. 3, 887-892, 2003.
doi:10.1109/TMTT.2003.808630 Google Scholar
3. Hagl, D. M., D. Popovic, S. C. Hagness, J. H. Booske, and M. Okoniewski, "Sensing volume of open-ended coaxial probes for dielectric characterization of breast tissue at microwave frequencies," IEEE Trans. Microwave Theory and Tech., Vol. 51, No. 4, 1194-12096, 2003.
doi:10.1109/TMTT.2003.809626 Google Scholar
4. Bindu, G., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802 Google Scholar
5. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.
doi:10.2528/PIER08062701 Google Scholar
6. Bond, E. J., X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. on Antennas and Propagation, Vol. 51, No. 8, 1690-1705, 2003.
doi:10.1109/TAP.2003.815446 Google Scholar
7. Zainud-Deen, S. H., W. M. Hassen, E. M. Ali, K. H. Awadalla, and H. A. Sharshar, "Breast cancer detection using a hybrid finite di®erence frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703 Google Scholar
8. Li, X., E. J. Bond, B. D. Van Veen, and S. C. Hagness, "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas and Propagation Magazin, Vol. 47, No. 1, 19-34, 2005.
doi:10.1109/MAP.2005.1436217 Google Scholar
9. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection | Experimental investigation of simple tumor models," IEEE Trans. on Microwave Theory and Tech., Vol. 53, No. 11, 3312-3319, 2005.
doi:10.1109/TMTT.2005.857330 Google Scholar
10. Zhou, H., T. Takenaka, J. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001 Google Scholar
11. Klemm, M., I. Craddock, J. Leendertz, A. Preece, and R. Benjamin, "Experimental and clinical results of breast cancer detection using UWB microwave radar," IEEE Antennas and Propagation Society International Symposium, AP-S 2008, 1-4, 2008. Google Scholar
12. Craddock, I. J., M. Klemm, J. Leendertz, A. W. Preece, and R. Benjamin, "An improved hemispeherical antenna array design for breast imaging," Proceedings European Conference on Antennas and Propagation, EuCAP 2007, 1-5, 2007. Google Scholar
13. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 1841-1853, 2000.
doi:10.1109/22.883861 Google Scholar
14. Kanj, H. and M. Popovic, "A novel ultra-compact broadband antenna for microwave breast tumor detection," Progress In Electromagnetics Research, Vol. 86, 169-198, 2008.
doi:10.2528/PIER08090701 Google Scholar
15. Amineh, R. K., A. Trehan, and N. K. Nikolova, "TEM horn antenna for ultra-wide band microwave breast imaging," Progress In Electromagnetics Research B, Vol. 13, 59-74, 2009.
doi:10.2528/PIERB08122213 Google Scholar
16. Lim, K.-S., M. Nagalingam, and C.-P. Tan, "Design and construction of microstrip UWB antenna with time domain analysis," Progress In Electromagnetics Research M, Vol. 3, 153-164, 2008.
doi:10.2528/PIERM08051903 Google Scholar
17. Klemm, M. and G. Troester, "EM energy absorption in the human body tissues due to UWB antennas," Progress In Electromagnetics Research, Vol. 62, 261-280, 2006.
doi:10.2528/PIER06040601 Google Scholar
18. Li, X., S. K. Davis, S. C. Hagness, D. W. van der Weide, and B. D. Van Veen, "Microwave imaging via space time beamforming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Trans. Microwave Theory and Tech., Vol. 52, 1856-1865, August 2004.
doi:10.1109/TMTT.2004.832686 Google Scholar
19. Bindu, G., A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Dielectric studies of corn syrup for applications in microwave breast imaging," Progress In Electromagnetics Research, Vol. 59, 175-186, 2006.
doi:10.2528/PIER05072801 Google Scholar
20. Slaney, M. and A. C. Kak, "Limitations of imaging with first-order diffraction tomography," EEE Trans. Microwave Theory and Tech., Vol. 32, No. 8, 860-874, 1984.
doi:10.1109/TMTT.1984.1132783 Google Scholar
21. Sakamoto, T. and T. Sato, "A target shape estimation algorithm for puse radar systems based on boundary scattering transform," IEICE Trans. Commun., Vol. E87-B, No. 5, 1357-1365, 2004. Google Scholar
22. Golub, G. H. and C. F. Van Loan, "Matrix Computations," Johns Hopkins, 1996. Google Scholar
23. GprMAX V2.0, avaliable in www.gprmax.org, . Google Scholar
24. Zajíček, R., T. Smejkal, L. Oppl, and J. Vrba, "Medical diagnostics using reflection method and waveguide probes-feasibility study," PIERS Proceedings, 759-762, 2008. Google Scholar
25. Zajíček, R., L. Oppl, and J. Vrba, "Broadband measurement of complex permittivity," Radioengineering, Vol. 17, No. 1, 14-19, 2008. Google Scholar