Vol. 94
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-07-25
Water-to-Cement Ratio Prediction Using Anns from Non-Destructive and Contactless Microwave Measurements
By
Progress In Electromagnetics Research, Vol. 94, 311-325, 2009
Abstract
In concrete industry, there is a need for water-to-cement ratio (w/c) estimation of cement-based materials since the w/c ratio of cement mixtures is typically given at the batch plant, and this ratio, sometimes, is deliberately changed to have a more workable cement mixture. To meet the requirements of accurate w/c ratio determination of cement-based materials, in this research paper, we propose an artificial neural network approach for w/c ratio estimation of these materials using free-space non-contact reflection and transmission measurements of mortar specimens with w/c ratios of 0.40, 0.45, 0.50, 0.55 and 0.60. We have tested the network and observed less than 5 percent difference between the estimated and known values of w/c = 0.50.
Citation
Ugur Cem Hasar, Gokay Akkaya, Mehmet Aktan, Cuneyt Gozu, and Abdulkadir Cuneyt Aydin, "Water-to-Cement Ratio Prediction Using Anns from Non-Destructive and Contactless Microwave Measurements," Progress In Electromagnetics Research, Vol. 94, 311-325, 2009.
doi:10.2528/PIER09061008
References

1. Zoughi, R., Microwave Non-destructive Testing and Evaluation, Kluwer Academic Publishers, 2000.

2. Aydin, A. C., A. Arslan, and R. Gül, "Mesoscale simulation of cement based materials' time-dependent behavior," Computational Materials Science, Vol. 41, 20-26, 2007.
doi:10.1016/j.commatsci.2007.02.012

3. Bois, K. J., A. D. Benally, P. S. Nowak, and R. Zoughi, "Cure-state monitoring and water-to-cement ratio determination of fresh Portland cement-based materials using near-field microwave techniques," IEEE Trans. Instrum. Meas., Vol. 47, 628-637, 1998.
doi:10.1109/19.744313

4. Neville, A. M., Properties of Concrete, Longman Group, 1996.

5. Malhotra, V. M. and N. J. Carino (Eds.), "Handbook on Nondestructive Testing of Concrete," CRC Press, 2004.

6. Zainud-Deen, S. H., M. E. S. Badr, E. El-Deen, and K. H. Awadalla, "Microstrip antenna with corrugated ground plane structure as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 2, 259-278, 2008.
doi:10.2528/PIERB07112702

7. Yan, L. P., K. M. Huang, and C. J. Liu, "A noninvasive method for determining dielectric properties of layered tissues on human back," Journal of Electromagnetic Waves and Applications, Vol. 21, 1829-1843, 2007.

8. Zainud-Deen, S. H., W. M. Hassen, E. M. Ali, and K. H. Awadalla, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703

9. Zainud-Deen, S. H., M. E. S. Badr, E. El-Deen, K. H. Awadalla, and H. A. Sharshar, "Microstrip antenna with defected ground plane structure as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 4, 27-39, 2008.
doi:10.2528/PIERB08010203

10. Capineri, L., D. Daniels, P. Falorni, O. Lopera, and C. Windsor, "Estimation of relative permittivity of shallow soils by using the ground penetrating radar response from di®erent buried targets," Progress In Electromagnetics Research Letters, Vol. 2, 63-71, 2008.
doi:10.2528/PIERL07122803

11. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.
doi:10.2528/PIERB08082701

12. Carriveau, G. W. and R. Zoughi, "Nondestructive evaluation and characterization of complex composite structures," Proc. 11th Int. Symp. Nondestructive Characterization of Materials, Vol. 273, No. 280, Berlin, Germany, 2002.

13. Arunachalam, K., V. R. Melapudi, L. Udpa, and S. S. Udpa, "Microwave NDT of cement-based materials using far-field reflection coefficients," NDT & E Int., Vol. 39, 585-593, 2006.
doi:10.1016/j.ndteint.2006.03.001

14. Bois, K. J., A. D. Benally, and R. Zoughi, "Microwave near-field reflection property analysis of concrete for material content determination," IEEE Trans. Instrum. Meas., Vol. 49, 49-55, 2000.
doi:10.1109/19.836308

15. Mubarak, K., K. J. Bois, and R. Zoughi, "A simple, robust, and on-site microwave technique for determining water-to-cement ratio (w/c) of fresh Portland cement-based materials," IEEE Trans. Instrum. Meas., Vol. 50, 1255-1263, 2001.
doi:10.1109/19.963194

16. Ganchev, S. I., S. Bakhtiari, and R. Zoughi, "A novel numerical technique for dielectric measurement of generally lossy dielectrics," IEEE Trans. Instrum. Meas., Vol. 41, 361-365, 1992.
doi:10.1109/19.153329

17. Pieraccini, M., G. Luzi, D. Mecatti, L. Noferini, and C. Atzeni, "A microwave radar technique for dynamic testing of large structures," IEEE Trans. Microw. Theory Tech., Vol. 51, 1603-1609, 2003.
doi:10.1109/TMTT.2003.810145

18. Arunachalam, K., V. R. Melapudi, E. J. Rothwell, L. Udpa, and S. S. Udpa, "Microwave NDE for reinforced concrete," Review of progress in QNDE, Vol. 25, 455-460, 2006.

19. Kharkovsky, S. N., M. F. Akay, U. C. Hasar, and C. D. Atis, "Measaurement and monitoring of microwave reflection and transmission properties of cement-based materials," IEEE Trans. Instrum. Meas, Vol. 51, 1210-1218, 2002.
doi:10.1109/TIM.2002.808081

20. Kharkovsky, S. N. and C. D. Atis, "Nondestructive testing of mortar specimen by using the microwave free-space method," J. Mater. Civ. Eng., Vol. 15, 200-204, 2003.
doi:10.1061/(ASCE)0899-1561(2003)15:2(200)

21. Hasar, U. C., "Free-space nondestructive characterization of young mortar samples," J. Mater. Civ. Eng., Vol. 19, 674-682, 2007.
doi:10.1061/(ASCE)0899-1561(2007)19:8(674)

22. Hasar, U. C., "Non-destructive testing of hardened cement specimens at microwave frequencies using a simple free-space method," NDT & E Int., Vol. 42, 550-557, 2009.
doi:10.1016/j.ndteint.2009.04.004

23. Trabelsi, S. and S. O. Nelson, "Free-space measurement of dielectric properties of cereal grain and oilseed at microwave frequencies," Meas. Sci. Technol., Vol. 14, 589-600, 2003.
doi:10.1088/0957-0233/14/5/308

24. ASTM "Standart specification for concrete aggregates," Annual Book of ASTM Standards, ASTM C-33, West Conshohocken, Pa, 1990.

25. ASTM "Standard test method for specific gravity and absorption of fine aggregate," Annual Book of ASTM Standards, ASTM C-128, West Conshohocken, Pa, 1993.

26. Ida, N., Microwave NDT, Kluwer Academic Publishers, 1992.

27. Olmi, R., G. Pelosi, C. Riminesi, and M. Tedesco, "A neural network approach to real-time dielectric characterization of materials," Microwave Opt. Technol. Lett., Vol. 35, 463-465, 2002.
doi:10.1002/mop.10639

28. Zhang, Q. J. and K. C. Gupta, "Neural Networks for RF and Microwave Design," Artech House, 2000.

29. Jargon, J. A., K. C. Gupta, and D. C. DeGroot, "Applications of artificial neural networks to RF and microwave measurements," Int. J. RF and Microwave CAE, Vol. 12, 3-24, 2002.

30. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of air-suspended trapezoidal and rectangular-shaped microshield lines," Journal of Electromagnetic Waves and Applications, Vol. 20, 1161-1174, 2006.
doi:10.1163/156939306777442917

31. Jin, L., C. L. Ruan, and L. Y. Chun, "Design E-plane bandpass filter based on EM-ANN model," Journal of Electromagnetic Waves and Applications, Vol. 20, 1061-1069, 2006.
doi:10.1163/156939306776930259

32. Mohamed, M. D. A., E. A. Soliman, and M. A. El-Gamal, "Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks," Journal of Electromagnetic Waves and Applications, Vol. 20, 1101-1114, 2006.
doi:10.1163/156939306776930240

33. Ayestarn, R. G. and F. Las-Heras, "Near field to far field transformation using neural networks and source reconstruction," Journal of Electromagnetic Waves and Applications, Vol. 20, 2201-2213, 2006.
doi:10.1163/156939306779322594

34. Ripley, B. D., Pattern Recognition and Neural Networks, Cambridge University Press, 1996.

35. Haykin, S., Neural Networks: A Comprehensive Foundation, Macmillan College (IEEE Book Press), 1996.

36. Montgomery, D. C. and G. C. Runger, Applied Statistics and Probability for Engineers, Wiley, 2003.