1. Zoughi, R., Microwave Non-destructive Testing and Evaluation, Kluwer Academic Publishers, 2000.
2. Aydin, A. C., A. Arslan, and R. Gül, "Mesoscale simulation of cement based materials' time-dependent behavior," Computational Materials Science, Vol. 41, 20-26, 2007.
doi:10.1016/j.commatsci.2007.02.012 Google Scholar
3. Bois, K. J., A. D. Benally, P. S. Nowak, and R. Zoughi, "Cure-state monitoring and water-to-cement ratio determination of fresh Portland cement-based materials using near-field microwave techniques," IEEE Trans. Instrum. Meas., Vol. 47, 628-637, 1998.
doi:10.1109/19.744313 Google Scholar
4. Neville, A. M., Properties of Concrete, Longman Group, 1996.
5. Malhotra, V. M. and N. J. Carino (Eds.), "Handbook on Nondestructive Testing of Concrete," CRC Press, 2004. Google Scholar
6. Zainud-Deen, S. H., M. E. S. Badr, E. El-Deen, and K. H. Awadalla, "Microstrip antenna with corrugated ground plane structure as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 2, 259-278, 2008.
doi:10.2528/PIERB07112702 Google Scholar
7. Yan, L. P., K. M. Huang, and C. J. Liu, "A noninvasive method for determining dielectric properties of layered tissues on human back," Journal of Electromagnetic Waves and Applications, Vol. 21, 1829-1843, 2007. Google Scholar
8. Zainud-Deen, S. H., W. M. Hassen, E. M. Ali, and K. H. Awadalla, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703 Google Scholar
9. Zainud-Deen, S. H., M. E. S. Badr, E. El-Deen, K. H. Awadalla, and H. A. Sharshar, "Microstrip antenna with defected ground plane structure as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 4, 27-39, 2008.
doi:10.2528/PIERB08010203 Google Scholar
10. Capineri, L., D. Daniels, P. Falorni, O. Lopera, and C. Windsor, "Estimation of relative permittivity of shallow soils by using the ground penetrating radar response from di®erent buried targets," Progress In Electromagnetics Research Letters, Vol. 2, 63-71, 2008.
doi:10.2528/PIERL07122803 Google Scholar
11. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.
doi:10.2528/PIERB08082701 Google Scholar
12. Carriveau, G. W. and R. Zoughi, "Nondestructive evaluation and characterization of complex composite structures," Proc. 11th Int. Symp. Nondestructive Characterization of Materials, Vol. 273, No. 280, Berlin, Germany, 2002. Google Scholar
13. Arunachalam, K., V. R. Melapudi, L. Udpa, and S. S. Udpa, "Microwave NDT of cement-based materials using far-field reflection coefficients," NDT & E Int., Vol. 39, 585-593, 2006.
doi:10.1016/j.ndteint.2006.03.001 Google Scholar
14. Bois, K. J., A. D. Benally, and R. Zoughi, "Microwave near-field reflection property analysis of concrete for material content determination," IEEE Trans. Instrum. Meas., Vol. 49, 49-55, 2000.
doi:10.1109/19.836308 Google Scholar
15. Mubarak, K., K. J. Bois, and R. Zoughi, "A simple, robust, and on-site microwave technique for determining water-to-cement ratio (w/c) of fresh Portland cement-based materials," IEEE Trans. Instrum. Meas., Vol. 50, 1255-1263, 2001.
doi:10.1109/19.963194 Google Scholar
16. Ganchev, S. I., S. Bakhtiari, and R. Zoughi, "A novel numerical technique for dielectric measurement of generally lossy dielectrics," IEEE Trans. Instrum. Meas., Vol. 41, 361-365, 1992.
doi:10.1109/19.153329 Google Scholar
17. Pieraccini, M., G. Luzi, D. Mecatti, L. Noferini, and C. Atzeni, "A microwave radar technique for dynamic testing of large structures," IEEE Trans. Microw. Theory Tech., Vol. 51, 1603-1609, 2003.
doi:10.1109/TMTT.2003.810145 Google Scholar
18. Arunachalam, K., V. R. Melapudi, E. J. Rothwell, L. Udpa, and S. S. Udpa, "Microwave NDE for reinforced concrete," Review of progress in QNDE, Vol. 25, 455-460, 2006. Google Scholar
19. Kharkovsky, S. N., M. F. Akay, U. C. Hasar, and C. D. Atis, "Measaurement and monitoring of microwave reflection and transmission properties of cement-based materials," IEEE Trans. Instrum. Meas, Vol. 51, 1210-1218, 2002.
doi:10.1109/TIM.2002.808081 Google Scholar
20. Kharkovsky, S. N. and C. D. Atis, "Nondestructive testing of mortar specimen by using the microwave free-space method," J. Mater. Civ. Eng., Vol. 15, 200-204, 2003.
doi:10.1061/(ASCE)0899-1561(2003)15:2(200) Google Scholar
21. Hasar, U. C., "Free-space nondestructive characterization of young mortar samples," J. Mater. Civ. Eng., Vol. 19, 674-682, 2007.
doi:10.1061/(ASCE)0899-1561(2007)19:8(674) Google Scholar
22. Hasar, U. C., "Non-destructive testing of hardened cement specimens at microwave frequencies using a simple free-space method," NDT & E Int., Vol. 42, 550-557, 2009.
doi:10.1016/j.ndteint.2009.04.004 Google Scholar
23. Trabelsi, S. and S. O. Nelson, "Free-space measurement of dielectric properties of cereal grain and oilseed at microwave frequencies," Meas. Sci. Technol., Vol. 14, 589-600, 2003.
doi:10.1088/0957-0233/14/5/308 Google Scholar
24. ASTM "Standart specification for concrete aggregates," Annual Book of ASTM Standards, ASTM C-33, West Conshohocken, Pa, 1990. Google Scholar
25. ASTM "Standard test method for specific gravity and absorption of fine aggregate," Annual Book of ASTM Standards, ASTM C-128, West Conshohocken, Pa, 1993. Google Scholar
26. Ida, N., Microwave NDT, Kluwer Academic Publishers, 1992.
27. Olmi, R., G. Pelosi, C. Riminesi, and M. Tedesco, "A neural network approach to real-time dielectric characterization of materials," Microwave Opt. Technol. Lett., Vol. 35, 463-465, 2002.
doi:10.1002/mop.10639 Google Scholar
28. Zhang, Q. J. and K. C. Gupta, "Neural Networks for RF and Microwave Design," Artech House, 2000. Google Scholar
29. Jargon, J. A., K. C. Gupta, and D. C. DeGroot, "Applications of artificial neural networks to RF and microwave measurements," Int. J. RF and Microwave CAE, Vol. 12, 3-24, 2002. Google Scholar
30. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of air-suspended trapezoidal and rectangular-shaped microshield lines," Journal of Electromagnetic Waves and Applications, Vol. 20, 1161-1174, 2006.
doi:10.1163/156939306777442917 Google Scholar
31. Jin, L., C. L. Ruan, and L. Y. Chun, "Design E-plane bandpass filter based on EM-ANN model," Journal of Electromagnetic Waves and Applications, Vol. 20, 1061-1069, 2006.
doi:10.1163/156939306776930259 Google Scholar
32. Mohamed, M. D. A., E. A. Soliman, and M. A. El-Gamal, "Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks," Journal of Electromagnetic Waves and Applications, Vol. 20, 1101-1114, 2006.
doi:10.1163/156939306776930240 Google Scholar
33. Ayestarn, R. G. and F. Las-Heras, "Near field to far field transformation using neural networks and source reconstruction," Journal of Electromagnetic Waves and Applications, Vol. 20, 2201-2213, 2006.
doi:10.1163/156939306779322594 Google Scholar
34. Ripley, B. D., Pattern Recognition and Neural Networks, Cambridge University Press, 1996.
35. Haykin, S., Neural Networks: A Comprehensive Foundation, Macmillan College (IEEE Book Press), 1996.
36. Montgomery, D. C. and G. C. Runger, Applied Statistics and Probability for Engineers, Wiley, 2003.