Vol. 94
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-07-29
A New Method for Evaluation of Thickness and Monitoring Its Variation of Medium- and Low-Loss Materials
By
Progress In Electromagnetics Research, Vol. 94, 403-418, 2009
Abstract
In this research paper, we propose an amplitude-only method for unique thickness evaluation of medium- and low-loss materials. The method is based on using amplitude-only measurements at different frequencies to evaluate the unique thickness. Main advantages of the method are a) it eliminates the necessity of repetitive measurements of different-length materials to evaluate the unknown thickness of the same type material and b) it determines the thickness at any desired frequency in the band. Because the method uses amplitude-only measurements and enables the thickness evaluation at any frequency, it can be a good candidate for thickness evaluation of materials in industrial-based applications.
Citation
Ugur Cem Hasar, "A New Method for Evaluation of Thickness and Monitoring Its Variation of Medium- and Low-Loss Materials," Progress In Electromagnetics Research, Vol. 94, 403-418, 2009.
doi:10.2528/PIER09061504
References

1. Zoughi, R., Microwave Non-destructive Testing and Evaluation, Kluwer Academic Publishers, 2000.

2. Zainud-Deen, S. H., M. E. S. Badr, E. El-Deen, and K. H. Awadalla, "Microstrip antenna with corrugated ground plane structure as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 2, 259-278, 2008.
doi:10.2528/PIERB07112702

3. Yan, L. P., K. M. Huang, and C. J. Liu, "A noninvasive method for determining dielectric properties of layered tissues on human back," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1829-1843, 2007.

4. He, X., Z. X. Tang, B. Zhang, and Y. Q.Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
doi:10.2528/PIERL08011501

5. Wu, Y. Q., Z. X. Tang, Y. H. Xu, X. He, and B. Zhang, "Permittivity measurement of ferroelectric thin film based on CPW transmission line," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 4, 555-562, 2008.
doi:10.1163/156939308784150272

6. Zainud-Deen, S. H., M. E. S. Badr, E. El-Deen, K. H. Awadalla, and H. A. Sharshar, "Microstrip antenna with defected ground plane structure as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 4, 27-39, 2008.
doi:10.2528/PIERB08010203

7. Capineri, L., D. J. Daniels, P. Falorni, O. L. Lopera, and C. G. Windsor, "Estimation of relative permittivity of shallow soils by using the ground penetrating radar response from different buried targets," Progress In Electromagnetics Research Letters, Vol. 2, 63-71, 2008.
doi:10.2528/PIERL07122803

8. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-D buried objects using parallel genetic algorithm combined with FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264

9. Blitz, J., "Electrical and Magnetic Methods of Non-destructive Testing," Chapman & Hall, 1997.

10. Zoughi, R. and M. Lujan, "Nondestructive microwave thickness measurements of dielectric slabs," Mater. Eval., Vol. 48, 1100-1105, 1990.

11. Zoughi, R. and S. Bakhtiari, "Microwave nondestructive detection and evaluation of disbonding and elamination in layered dielectric slabs," IEEE Trans. Instrum. Meas., Vol. 39, 1059-1063, 1990.
doi:10.1109/19.65826

12. Botsco, R. J., "Nondestructive testing of plastics with microwaves," Mater. Eval., Vol. 27, 25A-32A, 1969.

13. Zoughi, R., J. Edwards, and S. Bakhtiari, "Swept microwave frequency nondestructive detection and evaluation of delamination in stratified dielectric media," J. Wave-material Interaction, Vol. 7, 427-438, 1992.

14. Edwards, J. and R. Zoughi, "Microwave sensitivity maximization of disbond characterization in conductor backed dielectric composites," J. Nondestructive Eval., Vol. 12, 193-198, 1993.
doi:10.1007/BF00567087

15. Synder, R. C., "Measuring dielectric wall uniformity with microwave interferometry," Microwaves, Vol. 3, 26-29, 1964.

16. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 38, 789-793, 1989.
doi:10.1109/19.32194

17. Varadan, V. V., R. D. Hollinger, D. K. Ghodgaonkar, and V. K. Varadan, "Free space broadband measurement of high temperature complex dielectric properties at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 40, 842-846, 1991.
doi:10.1109/19.106308

18. Ma, Z. and S. Okamura, "Permittivity determination using amplitudes of transmission and reflection coe±cients at microwave frequency," IEEE Trans. Microw. Theory Tech., Vol. 47, 546-550, 1999.

19. Nakhkash, M., Y. Huang, W. Al-Nuaimy, and M. T. C. Fang, "An improved calibration technique for free-space measurement of complex permittivity," IEEE Trans. Geosci. Remote Sens., Vol. 39, 435-455, 2001.

20. Kharkovsky, S. N., M. F. Akay, U. C. Hasar, and C. D. Atis, "Measurement and monitoring of microwave reflection and transmission properties of cement-based specimens," IEEE Trans. Instrum. Meas., Vol. 51, 1210-1218, 2002.
doi:10.1109/TIM.2002.808081

21. Hasar, U. C., "Free-space nondestructive characterization of young mortar samples," J. Mater. Civ. Engn., Vol. 19, 674-682, 2007.
doi:10.1061/(ASCE)0899-1561(2007)19:8(674)

22. Hock, K. M. and scattering in free-space microwave measurement of materials, "Error correction for diffraction and multiple ," IEEE Trans. Microw. Theory Tech., Vol. 54, 648-659, 2006.
doi:10.1109/TMTT.2005.862666

23. Hasar, U. C., "A microcontroller-based microwave free-space measurement system for permittivity determination of lossy liquid," Rev. Sci. Instrum., Vol. 80, 056103-1-056103-3, 2009.

24. "Non-destructive testing of hardened cement specimens at microwave frequencies using a simple free-space method," NDT & E Int., Vol. 42, 550-557, 2009.
doi:10.1016/j.ndteint.2009.04.004

25. Lavelle, T. M., "Microwaves in nondestructive testing," Mater. Eval., Vol. 25, 254-258, 1967.

26. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

27. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, 33-36, 1974.
doi:10.1109/PROC.1974.9382

28. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the Transmission/Reflection method ," IEEE Trans. Microw. Theory Tech., Vol. 38, 1096-1103, 1990.
doi:10.1109/22.57336

29. Hasar, U. C., "A new microwave method based on transmission scattering parameter measurements for simultaneous broadband and stable permittivity and permeability determination," Progress In Electromagnetics Research, Vol. 93, 161-176, 2009.
doi:10.2528/PIER09041405

30. Hasar, U. C. and C. R. Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 471-477, 2009.
doi:10.1109/TMTT.2008.2011242

31. Hasar, U. C., "A microwave method for noniterative constitutive parameters determinaton of thin low-loss or lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 1595-1601, 2009.
doi:10.1109/TMTT.2009.2020779

32. Hasar, U. C., "Elimination of the multiple-solutions ambiguity in permittivity extraction from transmission only measurements of lossy materials," Microw. Opt. Technol. Lett., Vol. 51, 337-341, 2009.
doi:10.1002/mop.24048

33. Hasar, U. C. and O. Simsek, "On the application of microwave calibration-independent measurements for noninvasive thickness evaluation of medium- or low-loss solid materials," Progress In Electromagnetics Research, Vol. 91, 377-392, 2009.
doi:10.2528/PIER09020801

34. Bakhtiari, S., S. I. Ganchev, and R. Zoughi, "Microwave swept-frequency optimization for accurate thickness or dielectric property monitoring of conductor-baked composites," Mater. Eval., Vol. 51, 740-743, 1993.

35. Bakhtiari, S., S. I. Ganchev, and R. Zoughi, "Open-ended rectangular waveguide for nondestructive thickness measurement and variation detection of lossy dielectric slabs backed by a conducting plate," IEEE Trans. Instrum. Meas., Vol. 42, 19-24, 1993.
doi:10.1109/19.206673

36. Ganchev, S. I., N. Qaddoumi, E. Ranu, and R. Zoughi, "Microwave detection optimization of disbond in layered dielectrics with varying thickness," IEEE Trans. Instrum. Meas., Vol. 44, 326-328, 1995.
doi:10.1109/19.377843

37. Bakhtiari, S., N. Qaddoumi, S. I. Ganchev, and R. Zoughi, "Microwave noncontact examination of disbond and thickness variation in stratified composite media," IEEE Trans. Microw. Theory. Tech., Vol. 42, 389-395, 1994.
doi:10.1109/22.277431

38. Bakhtiari, S. and R. Zoughi, "Microwave thickness measurement of lossy layered dielectric slabs using incoherent reflectivity," Res. Nondestructive Eval., Vol. 2, 195-205, 1990.

39. Saleh, W., N. Qaddoumi, and M. Abu-Khousa, "Preliminary investigation of near-field nondestructive testing of carbon-loaded composites using loaded open-ended waveguides," Compos. Struct., Vol. 62, 403-407, 2003.
doi:10.1016/j.compstruct.2003.09.012

40. Kharkovsky, S., C. Ryley, V. Stephen, and R. Zoughi, "Dual-polarized near-field microwave reflectometer for noninvasive inspection of carbon fiber reinforced polymer-strengthened structures," IEEE Trans. Instrum. Meas., Vol. 57, 168-175, 2008.
doi:10.1109/TIM.2007.909497

41. Baker-Jarvis, J., M. D. Janezic, P. D. Domich, and R. G. Geyer, "Analysis of an open-ended coaxial probe with lift-off for nondestructive testing," IEEE Trans. Instrum. Meas., Vol. 43, 711-718, 1994.

42. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.

43. Chevalier, B., M. Chatard-Moulin, J. P. Astier, and P. Y. Guilon, "High temperature complex permittivity measurements of composite materials using an open-ended waveguide," Journal of Electromagnetic Waves and Applications, Vol. 6, 1259-1275, 1992.

44. Somlo, P. I. and J. D. Hunter, Microwave Impedance Measurement, Peter Peregrinus Ltd., 1985.

45. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, 1989.