1. Cheney, M., "The linear sampling method and the MUSIC algorithm," Inverse Problems, Vol. 17, 591-595, 2001.
doi:10.1088/0266-5611/17/4/301 Google Scholar
2. Lev-Ari, H. and A. J. Devancy, "The time-reversal technique re-interpreted: Subspace-based signal processing for multi-static target location," Sensor Array and Multichannel Signal Processing Workshop, 2000, Proceedings of the 2000 IEEE, 509-513, 2000.
doi:10.1109/SAM.2000.878061 Google Scholar
3. Prada, C. and M. Fink, "Eigenmodes of the time reversal operator: A solution to selective focusing in multiple-target media," Wave Motion, Vol. 20, 151-163, 1994.
doi:10.1016/0165-2125(94)90039-6 Google Scholar
4. Kerbrat, E., R. K. Ing, C. Prada, D. Cassereau, and M. Fink, "The D. O. R. T. method applied to detection and imaging in plates using Lamb waves," Review of Progress in Quantitative Nondestructive Evaluation, 934-940, Ames, Iowa (USA), 2001. Google Scholar
5. Prada, C., M. Tanter, and M. Fink, "Flaw detection in solid with the D. O. R. T. method," Ultrasonics Symposium, Vol. 1, 679-683, 1997. Google Scholar
6. Kerbrat, E., D. Clorennec, C. Prada, D. Royer, D. Cassereau, and M. Fink, "Detection of cracks in a thin air-filled hollow cylinder by application of the DORT method to elastic components of the echo," Ultrasonics, Vol. 40, 715-720, 2002.
doi:10.1016/S0041-624X(02)00199-3 Google Scholar
7. Mordant, N., C. Prada, and M. Fink, "Highly resolved detection and selective focusing in a waveguide using the D. O. R. T. method," The Journal of the Acoustical Society of America, Vol. 105, 2634-2642, 1999.
doi:10.1121/1.426879 Google Scholar
8. Tortel, H., G. Micolau, and M. Saillard, "Decomposition of the time reversal operator for electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 5, 687-719, 1999.
doi:10.1163/156939399X01113 Google Scholar
9. Prada, C., S. Manneville, D. Spoliansky, and M. Fink, "Decomposition of the time reversal operator: Detection and selective focusing on two scatterers ," The Journal of the Acoustical Society of America, Vol. 99, 2067-2076, 1996.
doi:10.1121/1.415393 Google Scholar
10. Prada, C. and J.-L. Thomas, "Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix ," The Journal of the Acoustical Society of America, Vol. 114, 235-243, 2003.
doi:10.1121/1.1568759 Google Scholar
11. Devaney, A. J., "Super-resolution processing of multi-static data using time reversal and MUSIC,", http://www.ece.neu.edu/faculty/devaney/preprints/paper02n 00.pdf. Google Scholar
12. Lehman, S. K. and A. J. Devaney, "Transmission mode time-reversal super-resolution imaging," The Journal of the Acoustical Society of America, Vol. 113, 2742-2753, 2003.
doi:10.1121/1.1566975 Google Scholar
13. Miwa, T. and I. Arai, "Super-resolution imaging for point reflectors near transmitting and receiving array," IEEE Transactions on Antennas and Propagation, Vol. 52, 220-229, 2004.
doi:10.1109/TAP.2003.820975 Google Scholar
14. Baussard, A. and T. Boutin, "Time-reversal RAP-MUSIC imaging," Waves in Random and Complex Media, Vol. 18, 151-160, 2008.
doi:10.1080/17455030701481856 Google Scholar
15. Simonetti, F., "Multiple scattering: The key to unravel the subwavelength world from the far-field pattern of a scattered wave," Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), Vol. 73, 036619-13, 2006. Google Scholar
16. Simonetti, F., "Pushing the boundaries of ultrasound imaging to unravel the subwavelength world," Proceedings of IEEE International Ultrasonics Symposium, 313-316, Vancouver, Canada, 2006.
17. Simonetti, F., M. Fleming, and E. A. Marengo, "Illustration of the role of multiple scattering in subwavelength imaging from far-field measurements," J. Opt. Soc. Am. A, Vol. 25, 292-303, 2008.
doi:10.1364/JOSAA.25.000292 Google Scholar
18. De Rosny, J. and C. Prada, "Multiple scattering: The key to unravel the subwavelength world from the far-field pattern of a scattered wave," Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), Vol. 75, 048601-2, 2007. Google Scholar
19. Minonzio, J.-G., C. Prada, A. Aubry, and M. Fink, "Multiple scattering between two elastic cylinders and invariants of the time-reversal operator: Theory and experiment," The Journal of the Acoustical Society of America, Vol. 120, 875-883, 2006.
doi:10.1121/1.2217128 Google Scholar
20. Moura, J. M. F. and J. Yuanwei, "Detection by time reversal: Single antenna," IEEE Transactions on Signal Processing, Vol. 55, 187-201, 2007.
doi:10.1109/TSP.2006.882114 Google Scholar
21. Moura, J. M. F. and J. Yuanwei, "Time reversal imaging by adaptive interference canceling," IEEE Transactions on Signal Processing, Vol. 56, 233-247, 2008.
doi:10.1109/TSP.2007.906745 Google Scholar
22. Minonzio, J.-G., M. Davy, J. de Rosny, C. Prada, and M. Fink, "Theory of the time-reversal operator for the dielectric cylinder using separate transmit and received arrays," IEEE Transactions on Antennas and Propagation, August 2009. Google Scholar
23. Stewart, G. W., "Perturbation theory for the singular value decomposition," SVD and Signal Processing, II: Algorithms Analysis and Applications, 99-109, 1990. Google Scholar
24. Xu, Z., "Perturbation analysis for subspace decomposition with applications in subspace-based algorithms," IEEE Transactions on Signal Processing, Vol. 50, 2820-2830, 2002. Google Scholar
25. Zhenhua, L., "Direct perturbation method for reanalysis of matrix singular value decomposition," Applied Mathematics and Mechanics, Vol. 18, 471-477, 1997.
doi:10.1007/BF02453742 Google Scholar
26. Liu, J., X. Liu, and X. Ma, "First-order perturbation analysis of singular vectors in singular value decomposition," IEEE Transactions on Signal Processing, Vol. 56, 3044-3049, 2008.
doi:10.1109/TSP.2007.916137 Google Scholar
27. De Moor, B., "The singular value decomposition and long and short spaces of noisy matrices," IEEE Transactions on Signal Processing, Vol. 41, 2826-2838, 1993.
doi:10.1109/78.236505 Google Scholar