Vol. 98
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-10-26
The Factorized Sparse Approximate Inverse Preconditioned Conjugate Gradient Algorithm for Finite Element Analysis of Scattering Problems
By
Progress In Electromagnetics Research, Vol. 98, 15-31, 2009
Abstract
The edge-based finite element method is used for the solution of scattering problems. The factorized sparse inverse preconditioner is considered for the conjugate gradient iterative solution of the large sparse linear systems generated from the finite element method. The efficiency of the proposed preconditioner is illustrated on a set of model problems in the final of the paper. The results suggest that the sparse inverse preconditioner is very efficient for the solution of large-scale electromagnetic scattering problems.
Citation
Xue Wei Ping, and Tie-Jun Cui, "The Factorized Sparse Approximate Inverse Preconditioned Conjugate Gradient Algorithm for Finite Element Analysis of Scattering Problems," Progress In Electromagnetics Research, Vol. 98, 15-31, 2009.
doi:10.2528/PIER09071703
References

1. Liu, H. and H. W. Yang, "FDTD analysis of magnetized ferrite sphere," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 17-18, 2399-2406, 2008.
doi:10.1163/156939308787543787

2. Ali, M. and S. Sanyal, "FDTD analysis of rectangular waveguide in receiving mode as EMI sensors," Progress In Electromagnetics Research B, Vol. 2, 291-303, 2008.
doi:10.2528/PIERB07112901

3. Sabri, M. M., J. Rashed-Mohassel, and N. Masoumi, "Application of FDTD-based macromodeling for signal integrity analysis in practical PCBs," Progress In Electromagnetics Research Letters, Vol. 5, 45-55, 2008.
doi:10.2528/PIERL08103103

4. Liu, Y. W., J. Wang, and K. K. Mei, "A simple MoM loading technique used in microstrip circuits," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 12, 1695-1709, 2002.
doi:10.1163/156939302X00516

5. Hassani, H. R. and M. Jahanbakht, "Method of moment analysis of finite phased array of aperture coupled circular microstrip patch antennas," Progress In Electromagnetics Research B, Vol. 4, 197-210, 2008.
doi:10.2528/PIERB08010602

6. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd edition, John Wiley & Sons, Inc., 2002.

7. Volakis, J. L., A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetic, IEEE Press, 1998.

8. Sun, X. Y. and Z. P. Nie, "Vector finite element analysis of multicomponent induction response in anisotropic formations," Progress In Electromagnetics Research, PIER 81, 21-39, 2008.

9. Aubourg, M. and P. Guillon, "A mixed finite element formulation for microwave devices problems. Application to MIS structure," Journal of Electromagnetic Waves and Applications, Vol. 5, No. 4-5, 371-386, 1991.
doi:10.1163/156939391X00130

10. Irons, B. M., "A frontal method solution program for finite element analysis," International Journal for Numerical Methods in Engineering, Vol. 2, 5-32, 1970.
doi:10.1002/nme.1620020104

11. Mittra, R. and O. Ramahi, "Absorbing boundary conditions for the direct solution of partial differential equations arising in electromagnetic scattering problems," Progress In Electromagnetics Research, PIER 02, 133-173, 1990.

12. Hadi, M. F., "Wide-angle absorbing boundary conditions for low and high-order FDTD algorithms," Applied Computational Electromagnetics Society Journal, Vol. 24, No. 1, 9-15, 2009.

13. Dyczij-Edlinger, R. and O. Biro, "A joint vector and scalar potential formulation for driven high frequency problems using hybrid edge and nodal finite elements," IEEE Trans. Microwave Theory Tech., Vol. 44, 15-23, 1996.
doi:10.1109/22.481380

14. Saad, Y., Iterative Methods for Sparse Linear Systems, PWS Publishing Company, 1995.

15. Benzi, M., "Preconditioning techniques for large linear systems: A survey," Journal of Computational Physics, Vol. 182, 418-477, 2002.
doi:10.1006/jcph.2002.7176

16. Carpentieri, B., "Fast iterative solution methods in electromagnetic scattering," Progress In Electromagnetics Research, PIER 79, 151-178, 2008.

17. Lahaye, D., H. D. Gersem, S. Vandewalle, and K. Hameyer, "Algebraic multigrid for complex symmetric systems," IEEE Trans. Magn., Vol. 36, No. 4, 1535-1538, 2000.
doi:10.1109/20.877730

18. Sheng, Y. J., R. S. Chen, and X. W. Ping, "An efficient pversion multigrid solver for fast hierarchical vector finite element analysis," Finite Elements in Analysis and Design, Vol. 44, 732-737, 2008.
doi:10.1016/j.finel.2008.04.004

19. Li, S. S., X. W. Ping, and R. S. Chen, "A kind of preconditioners based on shifted operators to solve three-dimensional TVFEM equations," IEEE 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 842-844, 2007.
doi:10.1109/MAPE.2007.4393757

20. Chen, Y., S. Yang, S. He, and Z. P. Nie, "Design and analysis of wideband planar monopole antennas using the multilevel fast multipole algorithm," Progress In Electromagnetics Research B, Vol. 15, 95-112, 2009.
doi:10.2528/PIERB09042002

21. Benzi, M. and M. Tuma, "A comparative study of sparse approximate inverse preconditioners," Applied Numerical Mathematics, Vol. 30, 305-340, 1999.
doi:10.1016/S0168-9274(98)00118-4

22. Axelsson, O., "On the rate of convergence of the preconditioned conjugate gradient method," Numerical Mathematics, Vol. 48, 499-523, 1986.
doi:10.1007/BF01389448

23. Mardochee Magolu Monga Made "Incomplete factorization-based preconditionings for solving the Helmholtz equation," International Journal for Numerical Methods in Engineering, Vol. 50, 1077-1101, 2001.
doi:10.1002/1097-0207(20010220)50:5<1077::AID-NME65>3.0.CO;2-P

24. Chen, R. S., X. W. Ping, E. K. N. Yung, C. H. Chan, et al. "Application of diagonally perturbed incomplete factorization preconditioned conjugate gradient algorithms for edge finite element analysis of Helmholtz equations," IEEE Trans. Antennas Propagat., Vol. 54, No. 5, 1604-1608, May 2006.
doi:10.1109/TAP.2006.874358

25. Huang, Z. and J. P. Webb, "Iterative solvers for hierarchal vector finite element analysis of microwave problems," IEEE Trans. Magn., Vol. 37, No. 5, 3285-3288, Sep. 2001.
doi:10.1109/20.952596

26. Benzi, M. and M. Tuma, "A sparse approximate inverse preconditioner for nonsymmetric linear systems," SIAM Journal of Sci. Comput., Vol. 19, 968-994, 1998.
doi:10.1137/S1064827595294691

27. Yeremin, A., L. Kolotilina, and A. Nikishin, "Factorized sparse approximate inverse preconditionings. IV: Simple approaches to rising effciency," Numerical Linear Algebra with Applications, Vol. 6, 515-531, 1999.

28. Ping, X. W., T.-J. Cui, and W. B. Lu, "The combination of Bcgstab with multifrontal algorithm to solve Febi-MLFMA linear systems arising from inhomogeneous electromagnetic scattering problems," Progress In Electromagnetics Research, PIER 93, 91-105, 2009.

29. Medgyesi-Mitschang, L. N. and J. M. Putnam, "Electromagnetic scattering from axially inhomogeneous bodies of revolution," IEEE Trans. Antennas Propagat., Vol. 32, No. 8, 797-806, 1984.
doi:10.1109/TAP.1984.1143430