1. Veselago, V. G., "Properties of materials having simultaneously negative values of dielectric (ε) and magnetic (μ) susceptibilities," Sov. Phys. Solid State, Vol. 8, 2854-2856, 1967. Google Scholar
2. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
3. Zhang, Y., T. M. Grzegorczyk, and J. A. Kong, "Propagation of electromagnetic waves in a slab with negative permittivity and negative permeability," Progress In Electromagnetics Research, Vol. 35, 271-286, 2002.
doi:10.2528/PIER01081901 Google Scholar
4. Srivastava, R., S. Srivastava, and S. P. Ojha, "Negative refraction by photonic crystal," Progress In Electromagnetics Research B, Vol. 2, 15-26, 2008.
doi:10.2528/PIERB08042302 Google Scholar
5. Mahmoud, S. F. and A. J. Viitanen, "Surface wave character on a slab of metamaterial with negative permittivity and permeability," Progress In Electromagnetics Research, Vol. 51, 127-137, 2005.
doi:10.2528/PIER03102102 Google Scholar
6. Podolskiy, V. A., A. K. Sarychev, and V. M. Shalaev, "Resonant light interaction with plasmonic nanowire systems," Opt. Express, Vol. 11, 735, 2003.
doi:10.1364/OE.11.000735 Google Scholar
7. Linden, S., C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100Terahertz," Science, Vol. 306, 1351, 2004.
doi:10.1126/science.1105371 Google Scholar
8. Zhang, S., W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, "Midinfrared resonant magnetic nanostructures exhibiting a negative permeability," Phys. Rev. Lett., Vol. 94, No. 3, 2005. Google Scholar
9. Dolling, G., M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett., Vol. 32, 53-55, 2007.
doi:10.1364/OL.32.000053 Google Scholar
10. Lezec, H. J., J. A. Dionne, and H. A. Atwater, "Negative refraction at visible frequencies," Science, Vol. 316, 430, 2007.
doi:10.1126/science.1139266 Google Scholar
11. Shi, L., L. Gao, S. He, and B. Li, "Superlens from metal-dielectric composites of nonspherical particles," Phys. Rev. B, Vol. 76, No. 4, 045116, 2007.
doi:10.1103/PhysRevB.76.045116 Google Scholar
12. Ambati, M., N. Fang, C. Sun, and X. Zhang, "Surface resonant states and superlensing in acoustic metamaterials," Phys. Rev. B, Vol. 75, 195447, 2007.
doi:10.1103/PhysRevB.75.195447 Google Scholar
13. Cai, W., D. A. Genov, and V. M. Shalaev, "A superlens based on metal-dielectric composites," Phys. Rev. B, Vol. 72, 193101, 2005.
doi:10.1103/PhysRevB.72.193101 Google Scholar
14. Rao, X. S. and C. K. Ong, "Subwavelength imaging by a left-handed material superlens," Phys. Rev. E, Vol. 68, 067601, 2003.
doi:10.1103/PhysRevE.68.067601 Google Scholar
15. Liu, Z., S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical superlens," Nano Letters, Vol. 7, No. 2, 403-408, 2007.
doi:10.1021/nl062635n Google Scholar
16. Lee, H., Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Design, fabrication and characterization of a far-field superlens," Solid State Communications, Vol. 146, 202-207, 2008. Google Scholar
17. Ramakrishna, S. A. and J. B. Pendry, "Imaging the near field," Journal of Modern Optics, Vol. 50, No. 9, 1419-1430, 2003. Google Scholar
18. Inazuki, Y. C., "Analysis of diffraction orders including mask topography effects for OPC optimization," Proc. of SPIE on Optical Microlithography XX, Vol. 6520, 65204S, San Jose, CA, USA, 2007.
19. Cao, P., L. Cheng, and X. Zhang, "Vector hopkins model research based on off-axis illumination in nanoscale lithography," Progress In Electromagnetics Research, Vol. 93, 291-306, 2009.
doi:10.2528/PIER09031702 Google Scholar
20. Born, M. and E.Wolf, Principles of Optics, Pergamon Press, 1980.
21. Lee, K., H. Park, J. Kim, G. Kang, and K. Kim, "Improved image quality of a Ag slab near-field superlens with intrinsic loss of absorption," Optics Express, Vol. 16, No. 3, 1711-1718, 2008.
doi:10.1364/OE.16.001711 Google Scholar
22. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory. Tech., Vol. 47, No. 11, 1084-2075, Nov. 1999. Google Scholar
23. Feng, L., X.-P. Liu, M.-H. Lu, and Y.-F. Chen, "Phase compensating effect in left-handed materials," Physics Letters A, Vol. 332, 449-455, 2004.
doi:10.1016/j.physleta.2004.09.035 Google Scholar
24. Pokrovsky, A. L. and A. L. Efros, "Lens based on the use of left-handed materials," Appl. Opt., Vol. 42, 5701-5705, 2003.
doi:10.1364/AO.42.005701 Google Scholar
25. Xiong, Y., Z. Liu, and X. Zhang, "Far-field superlens imaging at visible wavelengths," SPIE Newsroom, 2008. Google Scholar
26. Durant, S., Z. Liu, J. M. Steele, and X. Zhang, "Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit ," J. Opt. Soc. Am. B, Vol. 23, No. 11, 2383-2392, 2006.
doi:10.1364/JOSAB.23.002383 Google Scholar
27. Moharam, M. G., E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A, Vol. 12, 1068-1076, 1995.
doi:10.1364/JOSAA.12.001068 Google Scholar
28. Pandey, G. N., K. B. Thapa, S. K. Srivastava, and S. P. Ojha, "Band structures and abnormal behavior of one dimensional photonic crystal containing negative index materials," Progress In Electromagnetics Research M, Vol. 2, 15-36, 2008.
doi:10.2528/PIERM08021501 Google Scholar
29. Moussa, R., S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, "Negative refraction and superlens behavior in a two-dimensional photonic crystal," Physical Review B, Vol. 71, 085106, 2005.
doi:10.1103/PhysRevB.71.085106 Google Scholar