1. Hwang, S. M., J. I. Hong, and C. S. Huh, "Characterization of the susceptibility of integrated circuits with induction caused by high power microwaves," Progress In Electromagnetics Research, Vol. 81, 61-72, 2008. Google Scholar
2. Hong, J. I., S. M. Hwang, and C. S. Huh, "Susceptibility of microcontroller devices due to coupling effects under narrow-band high power electromagnetic waves by magnetron," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 17-18, 2451-2462, 2008. Google Scholar
3. Giri, D. V., High-power Electromagnetic Radiators Nonlethal Weapons and Other Applications, Harvard University Press, 2004.
4. Taylor, C. D. and D. V. Giri, High-power Microwave Systems and Effects, Tayloer & Francis, Washington D.C., 1994.
5. Hoad, R., A. Lambourne, and A. Wraight, "HPEM and HEMP susceptibility assessments of computer equipment," 17th International Zurich Symposium on Electromagnetic Compatibility, 168-171, Feb. 27-Mar. 3, 2006. Google Scholar
6. Keyser, V. and J. F. Rosnarho, "Criteria of choice of mode stirred reverberation chamber," 10th International Conference on Electromagnetic Interference & Compatibility, INCEMIC 2008, 267-272, 2008. Google Scholar
7. Wellander, N., O. Lunden, and M. Backstrom, "Experimental investigation and mathematical modeling of design parameters for efficient stirrers in mode-stirred reverberation chambers," IEEE Transactions on Electromagnetic Compatibility, Vol. 49, No. 1, 94-103, 2007. Google Scholar
8. Han, S. M., C. S. Huh, and J. S. Choi, "A new method for the compensation of coaxial cable loss while measuring EMP signals," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 1991-2000, 2009. Google Scholar
9. Zhong, W., Z. Shen, Y. K. R. Tai, and W. J. Koh, "Current distributions along a receiving thin dipole inside ideal anechoic and reverberation chambers," Progress In Electromagnetics Research, Vol. 88, 105-120, 2008. Google Scholar
10. Zhao, H. and Z. Shen, "Modal-expansion analysis of a monopole in vibrating reverberation chamber," Progress In Electromagnetics Research, Vol. 85, 303-322, 2008. Google Scholar
11. Wang, Y. J., W. J. Koh, and C. K. Lee, "Coupling cross section and shielding effectiveness measurements on a coaxial cable by both mode-tuned reverberation chamber and gtem cell methodologies," Progress In Electromagnetics Research, Vol. 47, 61-73, 2004. Google Scholar
12. Kouveliotis, N. K., P. T. Trakadas, and C. N. Capsalis, "FDTD modeling of a vibrating intrinsic reverberation chamber," Progress In Electromagnetics Research, Vol. 39, 47-59, 2003. Google Scholar
13. Fang, C. H., S. Zheng, H. Tan, D. Xie, and Q. Zhang, "Shielding effectiveness measurements on enclosures with various apertures by both mode-tuned reverberation chamber and gtem cell methodologies," Progress In Electromagnetics Research B, Vol. 2, 103-114, 2008. Google Scholar
14., IEC 61000-4-21, Electromagnetic Compatibility (EMC) --- Part 4--21: Testing and Measurement Techniques Reverberation Chamber Test Methods, 2003.
15. Hill, D. A., "Electromagnetic theory of reverberation chamber,", National Institute of Standards and Technology Technical Note 1506, NIST 1506, 1998. Google Scholar
16. Arnaut, L. R., "Statistics of quality factor of a rectangular reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 45, No. 1, 61-76, 2003. Google Scholar
17. Lunden, O. and M. Backstrom, "A factorial designed experiment for evaluation of mode-stirrers in reverberation chambers," IEEE International Symposium on Electromagnetic Compatibility, Vol. 1, 465-468, 2003. Google Scholar
18. Madsen, K., P. Hallbjorner, and C. Orlenius, "Models for the number of independent samples in reverberation chamber measurements with mechanical, frequency, and combined stirring," IEEE Antennas and Wireless Propagation Letters, Vol. 3, No. 1, 48-51, 2004. Google Scholar
19. Clegg, J., A. C. Marvin, and S. J. Porter, "Optimization of stirrer designs in a reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 4, 824-832, 2005. Google Scholar
20. Golestani-Rad, L. and J. Rashed-Mohassel, "Reconfiguration of personal computers' internal equipment for improved protection against penetrating EM pulses," Journal of Elelctromagnetic Waves and Applications, Vol. 20, No. 5, 677-688, 2006. Google Scholar
21. Hoad, R., N. J. Carter, D. Herke, and S. P. Watkins, "Trends in EM susceptibility of IT equipment," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, 309-395, 2004. Google Scholar
22. Asander, H. J., G. Eriksson, L. Jansson, and H. Akermark, "Field uniformity analysis of a mode stirred reverberation chamber using high resolution computational modeling," IEEE International Symposium on Electromagnetic Compatibility, Vol. 1, 285-290, 2002. Google Scholar