Vol. 103
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-04-14
Novel Fractal Antenna Arrays for Satellite Networks: Circular Ring Sierpinski Carpet Arrays Optimized by Genetic Algorithms
By
Progress In Electromagnetics Research, Vol. 103, 115-138, 2010
Abstract
A novel fractal antenna-array type is proposed. The design is based on the Sierpinski rectangular carpet concept. However, the generator is a circular ring area, filled with radiating elements, so the higher stages of the fractal development produce large arrays of circular rings which, besides the high directivity, have the advantage of the almost uniform azimuthal radiation pattern, attribute that many applications require. The introduced arrays can operate as direct radiating multi-beam phased arrays and meet the requirements of satellite communications links: high End of Coverage (EOC) directivity, low Side Lobe Level (SLL) and high Career to Interference ratio (C/I). These operational indices were further optimized by a synthesized multi-objective and multi-dimensional Genetic Algorithm (GA) which, additionally, gave arrays no more than 120 elements.
Citation
Katherine Siakavara, "Novel Fractal Antenna Arrays for Satellite Networks: Circular Ring Sierpinski Carpet Arrays Optimized by Genetic Algorithms," Progress In Electromagnetics Research, Vol. 103, 115-138, 2010.
doi:10.2528/PIER10020110
References

1. Werner, D. H., R. L. Haupt, and P. L. Werner, "Fractal antenna engineering: The theory and design of fractal antenna arrays," IEEE Antennas and Propagation Magazine, Vol. 41, No. 5, 37-59, 1999.
doi:10.1109/74.801513

2. Werner, D. H. and S. Ganguly, "An overview of fractal antenna engineering research," IEEE Antennas and Propagation Magazine, Vol. 45, No. 1, 38-57, 2003.
doi:10.1109/MAP.2003.1189650

3. Werner, H. and R. Mittra, Frontiers in Electromagnetics, IEEE Press, New York, 2000.
doi:10.1002/mop.20086

4. Siakavara, K. and F. Tsaldaris, "A multi-wideband microstrip antenna designed by the square curve fractal technique," Microwave and Optical Technology Letters, Vol. 41, No. 3, 180-185, 2004.
doi:10.1002/mop.20316

5. Siakavara, K., "Enhanced fractal microstrip antenna performance by using photonic bandgap fractal ground plane," Microwave and Optical Technology Letters, Vol. 42, No. 5, 397-402, 2004.
doi:10.1109/LAWP.2008.2010958

6. Siakavara, K. and T. Ganatsos, "Modification of the radiation patterns of higher order modes of triangular printed antennas by EBG ground planes ," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 124-128, 2009.
doi:10.1109/LAWP.2008.2010958

7. Salmasi, M. P., F. Hodjatkashani, and M. N. Azarmanesh, "A novel broadband fractal Sierpinski shaped, microstrip antenna," Progress In Electromagnetics Research C, Vol. 4, 179-190, 2008.
doi:10.2528/PIERC08031005

8. Azari, K. and J. Rowhani, "Ultra wideband fractal microstrip antenna design," Progress In Electromagnetics Research C, Vol. 2, 7-12, 2008.
doi:10.2528/PIERL09060102

9. Cheng, H. R., X.-Q. Chen, L. Chen, and X.-W. Shi, "Design of a fractal dual-polarized aperture coupled microstrip antenna," Progress In Electromagnetics Research Letters, Vol. 9, 175-181, 2009.
doi:10.1109/8.496259

10. Baliarda, C. P. and R. Pous, "Fractal design of multiband and low sidelobes array," IEEE Trans. Antennas Propagat., Vol. 44, No. 5, 730-739, 1996.
doi:10.1109/TAP.2007.893406

11. Haupt, R. L., "Optimized weighting of uniform subarrays of unequal sizes," IEEE Trans. Antennas Propagat., Vol. 55, No. 4, 1207-1210, 2007.
doi:10.1109/TAP.1985.1143682

12. Haupt, R. L., "Reducing grating lobes due to subarray amplitude tapering," IEEE Trans. Antennas Propagat., Vol. 33, No. 8, 846-850, 1985.
doi:10.1109/TAP.1985.1143682

13. Toso, G., C. Mangenot, and A. G. Roeder, "Sparse and thinned arrays for multiple beam satellite applications," Proc. of the Second European Conference on Antennas and Propagation (EuCAP 2007) , 2007.
doi:10.2528/PIER07081501

14. Razavi, A. and K. Forooraghi, "Thinned arrays using pattern search algorithm," Progress In Electromagnetic Research, Vol. 78, 61-71, 2008.
doi:10.2528/PIER07081501

15. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans. Antennas Propagat., Vol. 41, No. 2, 993-999, 2003.
doi:10.1002/mop.10128

16. Lommi, A., L. A. Massa, E. Storti, and A. Trucco, "Sidelobe reduction in sparse linear arrays by genetic algorithms," Microwave and Optical Technology Letters, Vol. 32, 194-196, 2002.
doi:10.1002/mop.10128

17. Vigano, M. C., G. Toso, C. Mangenot, P. Angeletti, and G. Pelosi, "GA optimized thinned hexagonal arrays for satellite applications," Proc. IEEE Antennas and Propagation International Symposium, 3165-3168, 2007.
doi:10.2528/PIER07061304

18. Mahanti, G. K., N. Pathak, and P. Mahanti, "Synthesis of thinned linear antenna arrays with fixed sidelobe level using real-coded genetic algorithm," Progress In Electromagnetic Research, Vol. 75, 319-328, 2007.
doi:10.2528/PIER07061304

19. Kaifas, T., K. Siakavara, D. Babas, G. Miaris, E. Vafiadis, and J. N. Sahalos, "On the design of direct radiating antenna arrays with reduced number of controls for satellite communications ," 1st International ICST Conference on Mobile Lightweight Wireless Systems --- MOBILIGHT 2009, Proceedings CD, May 18-20, 2009.
doi:10.2528/PIER10010104

20. Bucci, O. M., T. Isernia, and A. F. Morabito, "A deterministic approach to the synthesis of pencil beams through planar thinned arrays," Progress In Electromagnetic Research, Vol. 101, 217-230, 2010.
doi:10.2528/PIER08120806

21. Zhang, S., S.-X. Gong, Y. Guan, P.-F. Zhang, and Q. Gong, "A novel IGA-EDSPSO hybrid algorithm for the synthesis of sparse arrays ," Progress In Electromagnetic Research, Vol. 89, 121-134, 2009.
doi:10.2528/PIERB09072309

22. Tokan, F. and F. Gunes, "The multi-objective optimization of non-uniform linear phased arrays using the genetic algorithm," Progress In Electromagnetic Research B, Vol. 17, 135-151, 2009.
doi:10.2528/PIERB09072309

23. Pierro, V., V. Galdi, G. Castaldi, I. M. Pinto, L. B., and Felsen, "IEEE Trans. Antennas Propagat.," Radiation properties of planar antenna arrays based on certain categories of aperiodic tilings , Vol. 53, No. 2, 635-644, 2005.
doi:10.2528/PIER09040908

24. Morabito, A. F., T. Isernia, M. G. Labate, M. D'Urso, and O. M. Bucci, "Direct radiating arrays for satellite communications via aperiodic tilings," Progress In Electromagnetic Research, Vol. 93, 107-124, 2009.
doi:10.2528/PIER09040908

25. Vigano, M. C., G. Toso, G. Caille, C. Mangenot, and I. E. Lager, "Spatial density tapered sunflower antenna array," Proc. of the 3rd European Conference on Antennas and Propagation (EuCAP 2009) , 778-782, March 2009.

26. Angeletti, P. and G. Toso, "Aperiodic arrays for space applications: A combined amplitude/density synthesis approach," Proc. of the 3rd European Conference on Antennas and Propagation (EuCAP 2009), 2026-2030, March 2009.

27. Werner, D. H. and T. G. Spence, "Thinning of aperiodic antenna arrays for low side-lobe levels and broadband operation using genetic algorithms," Proc. IEEE Antennas and Propagation Society International Symposium, 2059-2062, 2006.

28. Werner, D. H., M. A. Gingrich, P. L. Werner, "A self-similar radiation pattern synthesis technique for reconfigurable multiband antennas," IEEE Trans. Antennas Propagat., Vol. 51, No. 7, 1486-1498, 2003.
doi:10.1109/TAP.2003.813608

29. Petko, J. S. and D. H. Werner, "The evolution of optimal linear polyfractal arrays using genetic algorithms," IEEE Trans. Antennas Propagat., Vol. 53, No. 11, 3604-3615, 2005.
doi:10.1109/TAP.2005.858582

30. Siakavara, K., E. Vafiadis, and J. N. Sahalos, "On the design of a direct radiating array by using the fractal technique," Proc. of the 3rd European Conference on Antennas and Propagation, 1242-1246, Berlin, Germany, March 23-27, 200.

31. Puente-Baliarda, C., J. Romeu, R. Pous, and A. Cardama, "On the behavior of the Sierpinski multiband fractal antenna," IEEE Trans. Antennas Propagat., Vol. 46, No. 4, 517-524, 1998.
doi:10.1109/8.664115

32. Balanis, C. A., Antenna Theory, 3rd Ed., John Wiley & Sons, New Jersey, 2005.

33. Haupt, R. and S. E. Haupt, "Practical Genetic Algorithms," John Wiley & Sons, 1998.

34. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, Wiley, New York, 1999.

35. Golino, G., "Improved genetic algorithm for the design of optimal antenna division in sub-arrays: A multi-objective genetic algorithm," Proc. IEEE International Radar Conference, 629-634, May 2005.

36. Bogard, J. N., D. Werner, and P. L. Werner, "Optimization of Peano-Gosper fractal arrays for broadband performance using genetic algorithms to eliminate grating lobes during scanning ," IEEE Antennas and Propagation Society International Symposium, Vol. 1B, 755-758, 2005.