Vol. 106
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-07-25
Modal Method Based on Spline Expansion for the Electromagnetic Analysis of the Lamellar Grating
By
Progress In Electromagnetics Research, Vol. 106, 243-261, 2010
Abstract
This paper reports an exact and explicit representation of the differential operators from Maxwell's equations. In order to solve these equations, the spline basis functions with compact support are used. We describe the electromagnetic analysis of the lamellar grating as an eigenvalues problem. We choose the second degree spline as basis functions. The basis functions are projected onto a set of test functions. We use and compare several test functions namely: Dirac, Pulse and Spline. We show that the choice of the basis and test functions has a great influence on the convergence speed. The outcomes are compared with those obtained by implementing the Finite-Difference Modal Method which is used as a reference. In order to improve the numerical results an adaptive spatial resolution is used. Compared to the reference method, we show a significantly improved convergence when using the spline expansion projected onto spline test functions.
Citation
Ana Maria Armeanu M. Kofi Edee Gerard Granet Patrick Schiavone , "Modal Method Based on Spline Expansion for the Electromagnetic Analysis of the Lamellar Grating," Progress In Electromagnetics Research, Vol. 106, 243-261, 2010.
doi:10.2528/PIER10021902
http://www.jpier.org/PIER/pier.php?paper=10021902
References

1. Botten, L. C., M. C. Craig, R. C. McPherdran, L. R. Adams, and J. R. Andrewartha, "The dielectric lamellar diffraction grating," Opt. Acta, Vol. 28, 413-428, 1981.

2. Botten, L. C., M. C. Craig, R. C McPherdran, L. R. Adams, and J. R. Andrewartha, "The finitely conducting lamellar diffraction grating," Opt. Acta, Vol. 28, 1087-1102, 1981.

3. Moharam, M. G. and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. A, Vol. 72, 1385-1392, 1982.
doi:10.1364/JOSA.72.001385

4. Neviere, M. and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design, Marcel Dekker, New York, 2003.

5. Morf, R. H., "Exponentially convergent and numerically efficient solution of Maxwell's equations for lamellar gratings," J. Opt. Soc. Am., Vol. 12, No. 5, 1043-1056, 1995.
doi:10.1364/JOSAA.12.001043

6. Lalanne, P. and J. P. Hugonin, "Numerical performance of finite-difference Modal Method for the electromagnetic analysis of one-dimensional grating," J. Opt. Soc. Am., Vol. 17, No. 6, 1033-1042, 2000.
doi:10.1364/JOSAA.17.001033

7. Modisette, J. P., P. Nordlander, J. L. Kinsey, and B. R. Johnson, "Wavelet based in eigenvalue problems in quantum mechanics," Chem. Phys. Letters, Vol. 250, 485-428, 1996.
doi:10.1016/0009-2614(96)00060-7

8. Beylkin, G., R. R. Coifman, and V. Rokhlin, "Fast wavelets transform and numerical algoritms I," Comm. Pure and Appl. Math., Vol. 44, 141-183, 1991, Yale University Technical Report YALEU/DCS/RR-696, August 1989.
doi:10.1002/cpa.3160440202

9. Wagner, R. L. and W. C. Chew, "A study of wavelets for the solution of electromagnetic intergal equations," IEEE Trans. Antennas Propagat., Vol. 43, 614-622, June 1995.
doi:10.1109/8.387178

10. Edee, K., P. Schiavone, and G. Granet, "Analysis of defect in extreme UV Lithography mask using a modal method based on nodal B-spline expansion," Japanese Journal of Applied Physics, Vol. 44, No. 9A, 6458-6462, 2005.
doi:10.1143/JJAP.44.6458

11. Armeanu, A., K. Edee, P. Schiavone, and G. Granet, "The lamellar diffraction grating problem: A spectral method based on spline expansion," Proceedings of ICMI 2 Conference, Vol. 19, No. 2, 37-46, 2009.

12. Jackson, J. D., Classical Electrodynamics, John Wiley and Sons, Inc., New York, 1962.

13. Harrington, R., Field computation by Moment Methods, The Macmillan, New York, 1968.

14. Harrington, R., "Matrix methods for field problem," Proceeding of the IEEE, Vol. 55, No. 2, 136-149, February 1967.
doi:10.1109/PROC.1967.5433

15. Guizal, B., H. Yala, and D. Felbacq, "Reformulation of the eigenvalue problem in the Fourier modal method with spatial adaptive resolution," Opt. Lett., Vol. 34, No. 18, 2790-2792, 2009.
doi:10.1364/OL.34.002790

16. Granet, G., "Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution," J. Opt. Soc. Am., Vol. 16, No. 10, 2510-2516, 1999.
doi:10.1364/JOSAA.16.002510