1. Botten, L. C., M. C. Craig, R. C. McPherdran, L. R. Adams, and J. R. Andrewartha, "The dielectric lamellar diffraction grating," Opt. Acta, Vol. 28, 413-428, 1981. Google Scholar
2. Botten, L. C., M. C. Craig, R. C McPherdran, L. R. Adams, and J. R. Andrewartha, "The finitely conducting lamellar diffraction grating," Opt. Acta, Vol. 28, 1087-1102, 1981. Google Scholar
3. Moharam, M. G. and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. A, Vol. 72, 1385-1392, 1982.
doi:10.1364/JOSA.72.001385 Google Scholar
4. Neviere, M. and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design, Marcel Dekker, 2003.
5. Morf, R. H., "Exponentially convergent and numerically efficient solution of Maxwell's equations for lamellar gratings," J. Opt. Soc. Am., Vol. 12, No. 5, 1043-1056, 1995.
doi:10.1364/JOSAA.12.001043 Google Scholar
6. Lalanne, P. and J. P. Hugonin, "Numerical performance of finite-difference Modal Method for the electromagnetic analysis of one-dimensional grating," J. Opt. Soc. Am., Vol. 17, No. 6, 1033-1042, 2000.
doi:10.1364/JOSAA.17.001033 Google Scholar
7. Modisette, J. P., P. Nordlander, J. L. Kinsey, and B. R. Johnson, "Wavelet based in eigenvalue problems in quantum mechanics," Chem. Phys. Letters, Vol. 250, 485-428, 1996.
doi:10.1016/0009-2614(96)00060-7 Google Scholar
8. Beylkin, G., R. R. Coifman, and V. Rokhlin, "Fast wavelets transform and numerical algoritms I," Comm. Pure and Appl. Math., Vol. 44, 141-183, 1991, Yale University Technical Report YALEU/DCS/RR-696, August 1989.
doi:10.1002/cpa.3160440202 Google Scholar
9. Wagner, R. L. and W. C. Chew, "A study of wavelets for the solution of electromagnetic intergal equations," IEEE Trans. Antennas Propagat., Vol. 43, 614-622, June 1995.
doi:10.1109/8.387178 Google Scholar
10. Edee, K., P. Schiavone, and G. Granet, "Analysis of defect in extreme UV Lithography mask using a modal method based on nodal B-spline expansion," Japanese Journal of Applied Physics, Vol. 44, No. 9A, 6458-6462, 2005.
doi:10.1143/JJAP.44.6458 Google Scholar
11. Armeanu, A., K. Edee, P. Schiavone, and G. Granet, "The lamellar diffraction grating problem: A spectral method based on spline expansion," Proceedings of ICMI 2 Conference, Vol. 19, No. 2, 37-46, 2009. Google Scholar
12. Jackson, J. D., Classical Electrodynamics, John Wiley and Sons, Inc., 1962.
13. Harrington, R., Field computation by Moment Methods, The Macmillan, 1968.
14. Harrington, R., "Matrix methods for field problem," Proceeding of the IEEE, Vol. 55, No. 2, 136-149, February 1967.
doi:10.1109/PROC.1967.5433 Google Scholar
15. Guizal, B., H. Yala, and D. Felbacq, "Reformulation of the eigenvalue problem in the Fourier modal method with spatial adaptive resolution," Opt. Lett., Vol. 34, No. 18, 2790-2792, 2009.
doi:10.1364/OL.34.002790 Google Scholar
16. Granet, G., "Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution," J. Opt. Soc. Am., Vol. 16, No. 10, 2510-2516, 1999.
doi:10.1364/JOSAA.16.002510 Google Scholar