Vol. 103
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-04-25
Scattering from Large 3-D Piecewise Homogeneous Bodies through Linear Embedding via Green's Operators and Arnoldi Basis Functions
By
Progress In Electromagnetics Research, Vol. 103, 305-322, 2010
Abstract
We apply the linear embedding via Green's operators (LEGO) method to the scattering by large finite dielectric bodies which contain metallic or penetrable inclusions. After modelling the body by means of LEGO bricks, we formulate the problem via an integral equation for the total incident currents over the boundaries of the bricks. This equation is turned into a weak form by means of the Method of Moments (MoM) and sub-domain basis functions. Then, to handle possibly large MoM matrices, we employ an order-reduction strategy based on: i) compression of the off-diagonal sub-blocks of the system matrix by the adaptive cross approximation algorithm and ii) subsequent compression of the whole matrix by using a basis of orthonormal entire-domain functions generated through the Arnoldi iteration algorithm. The latter leads to a comparatively small upper Hessenberg matrix easily inverted by direct solvers. We validate our approach and discuss the properties of the Arnoldi basis functions through selected numerical examples.
Citation
Vito Lancellotti Bastiaan P. de Hon Antonius G. Tijhuis , "Scattering from Large 3-D Piecewise Homogeneous Bodies through Linear Embedding via Green's Operators and Arnoldi Basis Functions," Progress In Electromagnetics Research, Vol. 103, 305-322, 2010.
doi:10.2528/PIER10032915
http://www.jpier.org/PIER/pier.php?paper=10032915
References

1. Matekovitz, L., V. A. Laza, and G. Vecchi, "Analysis of large complex structures with the synthetic-functions approach," IEEE Trans. Antennas Propag., Vol. 55, 2509-2521, Sep. 2007.
doi:10.1109/TAP.2007.904073

2. Yla-Oijala, P. and M. Taskinen, "Electromagnetic scattering by large and complex structures with surface equivalence principle algorithm ," Waves in Random and Complex Media, Vol. 19, 105-125, Feb. 2009.
doi:10.1080/17455030802585365

3. Mittra, R. and K. Du, "Characteristic basis function method for iteration-free solution of large method of moments problems," Progress In Electromagnetics Research B, Vol. 6, 307-336, 2008.
doi:10.2528/PIERB08031206

4. Laviada, J., F. Las-Heras, M. R. Pino, and R. Mittra, "Solution of electrically large problems with multilevel characteristic basis functions," IEEE Trans. Antennas Propag., Vol. 57, 3189-3198, Oct. 2009.
doi:10.1109/TAP.2009.2028603

5. Xiao, G., J.-F. Mao, and B. Yuan, "A generalized surface integral equation formulation for analysis of complex electromagnetic systems," IEEE Trans. Antennas Propag., Vol. 57, 701-710, Mar. 2009.
doi:10.1109/TAP.2009.2013425

6. Harrington, R. F., "Field Computation by Moment Methods," MacMillan, New York, 1968.

7. Bau III, D. and L. N. Trefethen, Numerical Linear Algebra, Soci. Indus. Ap. Math., Philadelphia, 1997.

8. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "An eigencurrent approach to the analysis of electrically large 3-D structures using linear embedding via Green's operators," IEEE Trans. Antennas Propag., Vol. 57, 3575-3585, Nov. 2009.
doi:10.1109/TAP.2009.2027616

9. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, Electromagnetic modelling of large complex 3-D structures with LEGO and the eigencurrent expansion method, AP/URSI Int. Symp., Charleston, SC, Jun. 2009.

10. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "A total inverse scattering operator formulation for solving large structures with lego ," International Conf. on Electromagnetics in Advanced Applications, ICEAA'09, 335-338, Sep. 2009.
doi:10.1109/ICEAA.2009.5297424

11. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "Sensitivity analysis of 3-D composite structures through linear embedding via Green's operators," Progress In Electromagnetics Research, Vol. 100, 309-325, Jan. 2010.
doi:10.2528/PIER09120108

12. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "On the convergence of the eigencurrent expansion method applied to linear embedding via Green's operators," IEEE Trans. Antennas and Propag., to appear.

13. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, A priori error estimate and control in the eigencurrent expansion method applied to linear embedding via Green's operators, AP/URSI Int. Symp., to be presented, Toronto, Canada, July 2010.

14. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "Analysis of antennas in the presence of large composite 3-D structures with linear embedding via Green's operators (LEGO) and a modified EFIE," 4th EuCAP, Barcelona, Spain, April 2010.

15. Kurz, S., O. Rain, and S. Rjasanow, "The adaptive cross-approximation technique for the 3D boundary-element method," IEEE Trans. Magn., Vol. 38, 421-424, Mar. 2002.
doi:10.1109/20.996112

16. Zhao, K., M. Vouvakis, and J.-F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Trans. Electromag. Compat., Vol. 47, 763-773, Nov. 2005.
doi:10.1109/TEMC.2005.857898

17. Arnoldi, W. E., "The principle of minimized iterations in the solution of the matrix eigenvalue problem," Quarterly of Applied Mathematics, Vol. 9, 17-29, 1951.

18. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

19. Collin, R. E., "Foundations for Microwave Engineering," McGraw-Hill, New York, 1992.

20. Redheffer, R., "On the relation of transmission-line theory to scattering and transfer," J. Math. Phys., Vol. 41, Mar. 1962.

21. Rumsey, V. H., "Reaction concept in electromagnetic theory," Phys. Rev., Vol. 94, 1483-1491, Jun. 1954.
doi:10.1103/PhysRev.94.1483

22. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill, London, 1961.

23. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley, Chichester, 1999.

24. Saad, Y., "Iterative Methods for Sparse Linear Systems," SIAM, 2003.

25. Golub, G. H. and C. F. van Loan, "Matrix Computations," Johns Hopkins University Press, Baltimore, 1996.

26. Webb, D. B., E. Michielssen, and R. Mittra, Thick frequency selective surfaces, AP/URSI Int. Symp., Vol. 4, 1795-1, Jul. 1992.

27. Love, A. E. H., "The integration of the equations of propagation of electric waves ," Philos. Trans. R. Soc. London, Ser. A, Vol. 197, 1-45, 1901.
doi:10.1098/rsta.1901.0013

28. Poggio, A. J. and E. K. Miller, "Integral equation solutions of three dimensional scattering problems," Computer Techniques for Electromagnetics, Pergamon, Oxford, UK, 1973.

29. Yla-Oijala, P. and M. Taskinen, "Well-conditioned Muller formulation for electromagnetic scattering by dielectric objects," IEEE Trans. Antennas Propag., Vol. 53, 3316-3323, Oct. 2005.
doi:10.1109/TAP.2005.856313