1. Sievenpiper, D., et al. "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001 Google Scholar
2. Yang, F. R., K. P. Ma, Y. Qian, and T. Itoh, "A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 8, 1509-1514, 1999.
doi:10.1109/22.780402 Google Scholar
3. Yang, F. and Y. Rahmat-Samii, "Electromagnetic band-gap structures in antenna engineering," The Cambridge RF and Microwave Engineering Series, Cambridge University Press, 2008. Google Scholar
4. McVay, J., N. Engheta, and A. Hoofar, "High impedance metamaterials surfaces using Hilbert-curve inclusions," IEEE Microw. Wire. Comp. Lett., Vol. 14, No. 3, 130-132, 2004.
doi:10.1109/LMWC.2003.822571 Google Scholar
5. Kim, Y., F. Yang, and A. Z. Elsherbeni, "Compact artificial magnetic conductor design using planar square spiral geometries," Progress In Electromagnetics Research, Vol. 77, 43-54, 2007.
doi:10.2528/PIER07072302 Google Scholar
6. De Cos, M. E., F. Las-Heras, and M. Franco, "Design of planar artificial magnetic conductor ground plane using frequency-selective surfaces for frequencies below 1 GHz," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 951-954, 2009.
doi:10.1109/LAWP.2009.2029133 Google Scholar
7. De Cos, M. E., Y. Alvarez, and F. Las-Heras, "Planar artificial magnetic conductor: Design and characterization setup in the RFID SHF band," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1467-1478, 2009.
doi:10.1163/156939309789476248 Google Scholar
8. Kern, D. J., D. H. Werner, A. Monorchio, L. Lanuza, and M. J. Wilhelm, "The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces," IEEE Trans. on Antennas and Propag., Vol. 53, No. 1, Jan. 2005.
doi:10.1109/TAP.2004.840540 Google Scholar
9. De Cos, M. E., Y. Alvarez, R. C. Hadarig, and F. Las-Heras, "Novel SHF band uniplanar Artificial Magnetic Conductor," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 44-47, 2010.
doi:10.1109/LAWP.2010.2041890 Google Scholar
10. Luukkonen, O., C. R. Simovski, and S. A. Tretyakov, "Grounded uniaxial material slabs as magnetic conductors," Progress In Electromagnetics Research B, Vol. 15, 267-283, 2009.
doi:10.2528/PIERB09050702 Google Scholar
11. Zhu, S. and R. Langley, "Dual-band wearable textile antenna on an EBG substrate," IEEE Trans. on Antennas and Propag., Vol. 57, No. 4, Apr. 2009.
doi:10.1109/TAP.2009.2014527 Google Scholar
12. Salonen, P. and Y. Rahmat-Samii, "Textile antennas: Effects of antenna bending on input matching and impedance bandwidth," IEEE Aerospace Electronic Systems Magazine, Vol. 22, No. 3, 10-14, 2007.
doi:10.1109/MAES.2007.340501 Google Scholar
13. Salonen, P., M. Keskilammi, and L. Sydanheimo, "A low-cost 2.45 GHz photonic band-gap patch antenna for wearable systems," Proc. 11th Int. Conf. Antennas and Propagation, 719-724, Apr. 17-20, 2001. Google Scholar
14. Salonen, P. and Y. Rahmat-Samii, "WEBGA-wearable electromagnetic band-gap antenna," IEEE APS Int. Symp. Dig., Vol. 1, 451-454, Monterrey, CA, Jun. 2004. Google Scholar
15. Monorchio, A., G. Manara, and L. Lanuzza, "Synthesis of artificial magnetic conductors by usisng multilayered frequency selective surfaces," IEEE Ant. Wireless Propag. Lett., Vol. 1, 196-199, 2002.
doi:10.1109/LAWP.2002.807956 Google Scholar
16. Xie, H.-H., Y.-C. Jiao, K. Song, and Z. Zhang, "A novel multi-band electromagnetic band-gap structure," Progress In Electromagnetics Research Letters, Vol. 9, 67-74, 2009.
doi:10.2528/PIERL09042302 Google Scholar
17. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, "Omni-direction reflection in one dimensional photonic crystal," Progress In Electromagnetics Research B, Vol. 7, 133-143, 2008.
doi:10.2528/PIERB08020601 Google Scholar
18. Ekmekci, E. and G. Turhan-Sayan, "Comparative investigation of resonance characteristics and electrical size of the double-sided Srr, Bc-Srr and conventional srr type metamaterials for varying substrate parameters," Progress In Electromagnetics Research B, Vol. 12, 35-62, 2009.
doi:10.2528/PIERB08120405 Google Scholar
19. Pajewski, L., L. Rinaldi, and G. Schettini, "Enhancement of directivity using 2D-electromagnetic crystals near the band-gap edge: A full-wave approach," Progress In Electromagnetics Research, Vol. 80, 179-196, 2008.
doi:10.2528/PIER07111504 Google Scholar
20. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Trans. on Antennas and Propag., Vol. 51, No. 10, 2691-2701, 2003.
doi:10.1109/TAP.2003.817559 Google Scholar
21. McVay, J., A. Hoofar, and N. Engheta, "Small dipole-antenna near Peano high-impedance surfaces," IEEE AP-S Int. Symp., Vol. 1, 305-308, 2004. Google Scholar
22. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Trans. on Antennas and Propag., Vol. 52, No. 9, Sep. 2004.
doi:10.1109/TAP.2004.834135 Google Scholar
23. Akhoondzadeh-Asl, L., D. J. Kern, P. Hall, and D. Werner, "Wideband dipoles on electromagnetic bandgap ground planes," IEEE Trans. on Antennas and Propag., Vol. 55, No. 9, Sep. 2007.
doi:10.1109/TAP.2007.904071 Google Scholar
24. Liang, J. and H.-Y. D. Yang, "Radiation characteristics of a microstrip patch over an electromagnetic bandgap surface," IEEE Trans. on Antennas and Propag., Vol. 55, No. 6, Jun. 2007. Google Scholar
25. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artifiial magnetic conductor surfaces and their application to low profile highgain planar antennas," IEEE Trans. on Antennas and Propag., Vol. 53, No. 1, 209-215, Jan. 2005.
doi:10.1109/TAP.2004.840528 Google Scholar
26. Sohn, J. R., K. Y. Kim, and H.-S. Tae, "Comparative study on various artificial magnetic conductors for low-profile antenna," Progress In Electromagnetics Research, Vol. 61, 27-37, 2006.
doi:10.2528/PIER06011701 Google Scholar
27. Yang, F. and Y. Rahmat Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna," Progress In Electromagnetics Research, Vol. 77, 2007. Google Scholar
28. Shaban, H., H. Elmikaty, and A. A. Shaalan, "Study the effects of electromagnetic band-gap (EBG) substrate on two patch microstrip antenna," Progress In Electromagnetics Research B, Vol. 10, 55-74, 2008.
doi:10.2528/PIERB08081901 Google Scholar
29. Hosseini, M. and S. Bashir, "A novel circularly polarized antenna based on an artificial ground plane," Progress In Electromagnetics Research Letters, Vol. 5, 13-22, 2008.
doi:10.2528/PIERL08102004 Google Scholar
30. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directive EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201 Google Scholar
31. Rajo-Iglesias, E., L. Inclan-Sanchez, and O. Quevedo-Teruel, "Back radiation reduction in patch antennas using planar soft surfaces," Progress In Electromagnetics Research Letters, Vol. 6, 123-130, 2009.
doi:10.2528/PIERL08111202 Google Scholar
32. Yuan, H.-W., S.-X. Gong, X.Wang, and W.-T.Wang, "Scattering analysis of a printed dipole antenna using PBG structures," Progress In Electromagnetics Research B, Vol. 1, 189-195, 2008.
doi:10.2528/PIERB07102302 Google Scholar
33. Duan, Z., S. Qu, and Y. Hou, "Electrically small antenna inspired by spired split ring resonator," Progress In Electromagnetics Research Letters, Vol. 7, 47-57, 2009.
doi:10.2528/PIERL09012005 Google Scholar
34. Moghadasi, S. M., A. R. Attari, and M. M. Mirsalehi, "Compact and wideband 1-D mushroom-like EBG filters," Progress In Electromagnetics Research, Vol. 83, 323-333, 2008.
doi:10.2528/PIER08050101 Google Scholar
35. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, "Design of photonic band gap filter," Progress In Electromagnetics Research, Vol. 81, 225-235, 2008.
doi:10.2528/PIER08010902 Google Scholar
36. Fallahzadeh, S., H. Bahrami, and M. Tayarani, "A novel dual-band bandstop waveguide filter using split ring resonators," Progress In Electromagnetics Research Letters, Vol. 12, 133-139, 2009.
doi:10.2528/PIERL09103103 Google Scholar
37. Awasthi, S. K., U. Malaviya, S. P. Ojha, N. K. Mishra, and B. Singh, "Design of a tunable polarizer using a one-dimensional nano sized photonic bandgap structure," Progress In Electromagnetics Research B, Vol. 5, 133-152, 2008.
doi:10.2528/PIERB08021004 Google Scholar
38. Hu, X., Q. Zhang, and S. He, "Compact dual-band rejection filter based on complementary meander line split ring resonator," Progress In Electromagnetics Research Letters, Vol. 8, 181-190, 2009.
doi:10.2528/PIERL08110801 Google Scholar
39. Liu, J.-C., H.-C. Lin, and B.-H. Zeng, "Complementary split ring resonators with dual mesh-shaped couplings and defected ground structures for wide pass-band and stop- band BPF design," Progress In Electromagnetics Research Letters, Vol. 10, 19-28, 2009. Google Scholar
40. Karthikeyan, S. S. and R. S. Kshetrimayum, "Compact wideband bandpass filter using open slot split ring resonator and CMRC," Progress In Electromagnetics Research Letters, Vol. 10, 39-48, 2009.
doi:10.2528/PIERL09061602 Google Scholar
41. Hsu, H., M. J. Hill, R. W. Ziolkowski, and J. Papapolymerou, "A duroid-based planar EBG cavity resonator filter with improved quality factor," IEEE Antennas and Propag. Letters, Vol. 1, 67-70, 2002.
doi:10.1109/LAWP.2002.802548 Google Scholar
42. Engheta, N., "Thin absorbing screens using metamaterial surfaces," IEEE Antennas and Propag. Society International Symp., Vol. 2, 392-395, Jun. 16-21, 2002. Google Scholar
43. Zheng, Q.-R., Y.-M. Yan, X.-Y. Cao, and N.-C. Yuan, "High impedance ground plane (Higp) incorporated with resistance for radar cross section (RCS) reduction of antenna," Progress In Electromagnetics Research, Vol. 84, 307-319, 2008.
doi:10.2528/PIER08072003 Google Scholar
44. Belaid, M. and K. Wu, "Spatial power amplifier using a passive active TEM waveguide concept," IEEE Trans. Microwave Theory and Tech., Vol. 51, No. 3, 684-689, Mar. 2003.
doi:10.1109/TMTT.2003.808698 Google Scholar
45. Li, Y. D., et al. "Prototyping dual-band artificial magnetic conductors with laser micromachining," Proc. of WARS Conference, Leura, NSW, Australia, Feb. 2006. Google Scholar