1. Nass, S. L., I. C. Henderson, and J. C. Lashof, Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer, National Academy Press, 2001.
2. Wang, L., X. Zhao, H. Sun, and G. Ku, "Microwave-induced acoustic imaging of biological tissues," Rev. Sci. Instrum., Vol. 70, No. 9, 3744-3748, 1991. Google Scholar
3. Li, D., P. M. Meaney, T. Raynolds, S. A. Pendergrass, M. W. Fanning, and K. D. Paulsen, "Parallel-detection microwave spectroscopy system for breast cancer imaging," Rev. Sci. Instrum., Vol. 75, No. 7, 2305-2313, 2004. Google Scholar
4. Kruger, R. A., K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434MHz --- Feasibility study," Radiology, Vol. 216, No. 1, 279-283, 2000. Google Scholar
5. Bulyshev, A., S. Y. Semenov, A. E. Souvorov, R. H. Svenson, A. G. Nazorov, Y. E. Sizov, and G. P. Tatsis, "Computational modeling of three-dimensional microwave tomography of breast cancer," IEEE Trans. Biomed. Eng., Vol. 48, No. 9, 1053-1056, Sep. 2001. Google Scholar
6. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, 1841-1853, Nov. 2000. Google Scholar
7. Meaney, P. M., K. D. Paulsen, J. T. Chang, M. W. Fanning, and A. Hartov, "Nonactive antenna compensation for fixed-array microwave imaging: Part II -Imaging results," IEEE Trans. Med. Imag., Vol. 18, No. 6, 508-518, Jun. 1999. Google Scholar
8. Souvorov, A. E., A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, and G. P. Tatis, "Two-dimensional analysis of a microwave flat antenna array for breast cancer tomography," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 8, 1413-1415, Aug. 2000. Google Scholar
9. Bulyshev, A. E., S. Y. Semenov, A. E. Souvorov, R. H. Svenson, A. G. Nazorov, Y. E. Sizov, and G. P. Tatsis, "Computational modeling of three-dimensional microwave tomography of breast cancer," IEEE Trans. Biomed. Eng., Vol. 48, No. 9, 1053-1056, Sep. 2001. Google Scholar
10. Liu, Q. H., Z. Q. Zhang, T. Wang, J. A. Byran, G. A. Ybarra, L. W. Nolte, and W. T. Joines, "Active microwave imaging i --- 2-D forward and inverse scattering methods," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 1, 123-133, Jan. 2002. Google Scholar
11. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Trans. Biomed. Eng., Vol. 45, No. 12, 1470-1479, 1998. Google Scholar
12. Hagness, S. C., A. Tatlove, and J. E. Bridges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antennaarray element," IEEE Trans. Antennas and Propagat., Vol. 47, No. 5, 783-791, May 1999. Google Scholar
13. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 49, No. 8, 812-822, Aug. 2002. Google Scholar
14. Fear, E. C. and M. A. Stuchly, "Microwave system for breast tumor detection," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 11, 470-472, Nov. 1999. Google Scholar
15. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 3, 887-892, Mar. 2003. Google Scholar
16. Fear, E., J. Sill, and M. Stuchly, "Microwave system for breast tumor detection: Experimental concept evaluation," IEEE APS International Symposium and USNC/URSI Radio Science Meeting, Vol. 1, 819-822, San Antonio, Texas, Jun. 2002. Google Scholar
17. Li, X. and S. C. Hagness, "A confocal microwave imagin algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 3, 130-132, 2001. Google Scholar
18. Li, X., E. J. Bond, B. D. V. Veen, and S. C. Hagness, "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas and Propagation Magazine, Vol. 47, No. 1, 19-34, Feb. 2005. Google Scholar
19. Hernandez-Lopez, M., M. Quintillan-Gonzalez, S. Garcia, A. Bretones, and R. Martin, "A rotating array of antennas for confocal microwave breast imaging," Microw. Opt. Technol. Lett., Vol. 39, No. 4, 307-311, Nov. 2003. Google Scholar
20. De Rodriguez, M., M. Vera-Isasa, and V. S. del Rio, "3-D microwave breast tumor detection: Study of system performance," IEEE Trans. Biomed. Eng., Vol. 55, No. 12, 2772-2777, 2008. Google Scholar
21. O'Halloran, M., M. Glavin, and E. Jones, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetics Research, Vol. 103, 153-168, 2010. Google Scholar
22. O'Halloran, M., M. Glavin, and E. Jones, "Effects of fibroglandular distribution on data-independent beamformering algorithms," Progress In Electromagnetics Research, Vol. 97, 141-158, 2009. Google Scholar
23. O'Halloran, M., M. Glavin, and E. Jones, "Quasi-multistatic MIST beamforming for the early detection of breast cancer," IEEE Trans. Biomed. Eng., Vol. 57, No. 4, 830-40, 2009. Google Scholar
24. Lazaro, A., D. Girbau, and R. Villarino, "Simulated and experimental investigation of microwave imaging using UWB," Progress In Electromagnetics Research, Vol. 94, 263-280, 2009. Google Scholar
25. Lazaro, A., D. Girbau, and R. Villarino, "Wavelet-based breast tumor localization technique using a UWB radar," Progress In Electromagnetics Research, Vol. 98, 75-95, 2009. Google Scholar
26. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008. Google Scholar
27. Bindu, G., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006. Google Scholar
28. Joines, W. T., Y. Zhang, C. Li, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Med. Phys., Vol. 21, No. 4, 547-550, Apr. 1994. Google Scholar
29. Surowiec, A. J., S. S. Stuchly, J. R. Barr, and A. Swarup, "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Trans. Biomed. Eng., Vol. 35, No. 4, 257-263, Apr. 1988. Google Scholar
30. Chaudhary, S. S., R. K. Mishra, A. Swarup, and J. M. Thomas, "Dielectric properties of normal and malignant human breast tissue at radiowave and microwave frequencies," Indian J. Biochem. Biophys., Vol. 21, 76-79, 1984. Google Scholar
31. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007. Google Scholar
32. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007. Google Scholar
33. Shea, J. D., P. Kosmas, S. C. Hagness, and B. D. V. Veen, "Contrast-enhanced microwave imaging of breast tumors: A computational study using 3d realistic numerical phantoms," Inverse Problems, Vol. 26, 2010. Google Scholar
34. O'Halloran, M., R. Conceicao, D. Byrne, M. Glavin, and E. Jones, "FDTD modeling of the breast: A review," Progress In Electromagnetics Research B, Vol. 18, 1-24, 2009. Google Scholar
35. Campbell, A. M. and D. V. Land, "Dielectric properties of fem human breast tissue measured in vitro at 3.2 GHz," Phys. Med. Biol., Vol. 37, No. 1, 193-210, 1992. Google Scholar
36. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. Microwave Theory Tech., Vol. 48, 1841-1853, 2000. Google Scholar
37. UWCEM, (Last accessed: June. 2010), UWCEM Nu-merical Breast Phantoms Repository, [Online], available: http://uwcem.ece.wisc.edu/home.htm.
38. Bond, E. J., X. Li, S. C. Hagness, and B. D. V. Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. Antennas and Propagat., Vol. 8, 1690-1705, Aug. 2003. Google Scholar
39. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Antenna configurations for ultra wide band radar detection of breast cancer," Progress in Biomedical Optics and Imaging, Vol. 10, No. 9, 7169, 2009. Google Scholar