1. Chen, L. F., C. K. Ong, C. P. Neo, et al. Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, 2004.
2. Kaatze, U., "Techniques for measuring the microwave dielectric properties of materials," Metrologia, Vol. 47, No. 2, S91-S113, 2010. Google Scholar
3. Hebeish, A. A., M. A. Elgamel, R. A. Abdelhady, et al. "Factors affecting the performance of the radar absorbant textile materials of different types and structures," Progress In Electromagnetics Research B, Vol. 3, 219-226, 2008. Google Scholar
4. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008. Google Scholar
5. Le Floch, J. M., F. Houndonougbo, V. Madrangeas, D. Cros, M. Guilloux-Viry, and W. Peng, "Thin film materials characterization using TE modes," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 549-559, 2009. Google Scholar
6. Jin, H., S. R. Dong, and D. M. Wang, "Measurement of dielectric constant of thin film materials at microwave frequencies," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 809-817, 2009. Google Scholar
7. Wu, Y. Q., Z. X. Tang, Y. H. Xu, and B. Zhang, "Measuring complex permeability of ferromagnetic thin films using microstrip ," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1303-1311, 2009. Google Scholar
8. Challa, R. K., D. Kajfez, J. R. Gladden, and A. Z. Elsherbeni, "Permittivity measurement with as non-standard waveguide by using TRL calibration and fractional linear data fitting," Progress In Electromagnetics Research B, Vol. 2, 1-13, 2008. Google Scholar
9. He, X., Z. X. Tang, B. Zhang, and Y. Q.Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008. Google Scholar
10. Wu, Y. Q., Z. X. Tang, Y. H. Xu, X. He, and B. Zhang, "Permittivity measurement of ferroelectric thin film based on CPW transmission line," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 4, 555-562, 2008. Google Scholar
11. Khalaj-Amirhosseini, K., "Closed form solutions for nonuniform transmission lines," Progress In Electromagnetics Research B, Vol. 2, 243-258, 2008. Google Scholar
12. Valagiannopoulos, C. A., "On measuring the permittivity tensor of an anisotropic material from the transmission coefficients," Progress In Electromagnetics Research B, Vol. 9, 105-116, 2008. Google Scholar
13. Wu, Y., Z. Tang, Y. Yu, and X. He, "A new method to avoid acrowding phenomenon in extracting the permittivity of ferroelectric thin films," Progress In Electromagnetics Research Letters, Vol. 4, 159-166, 2008. Google Scholar
14. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, 1970. Google Scholar
15. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974. Google Scholar
16. Bois, K. J., L. F. Handjojo, A. D. Benally, K. Mubarak, and R. Zoughi, "Dielectric plug-loaded two-port transmission line measurement technique for dielectric property characterization of granular and liquid materials," IEEE Trans. Instrum. Meas., Vol. 48, No. 6, 1141-1148, 1999. Google Scholar
17. Williams, T. C., M. A. Stuchly, and P. Saville, "Modified transmission-reflection method for measuring constitutive parameters of thin flexible high-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 5, 1560-1566, 2003. Google Scholar
18. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the Transmission/Reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 8, 1096-1103, 1990. Google Scholar
19. Boughriet, A. H., C. Legrand, and A. Chapoton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 52-57, 1997. Google Scholar
20. Kilic, E., F. Akleman, B. Esen, D. M. Ozaltin, O. Ozdemir, and A. Yapar, "3-D imaging of inhomogeneous materials loaded in a rectangular waveguide," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 5, 1290-1296, 2010. Google Scholar
21. Ness, J., "Broad-band permittivity measurements using the semiautomatic network analyzer," IEEE Trans. Microw. Theory Tech., Vol. 33, No. 11, 1222-1226, 1985. Google Scholar
22. Hasar, U. C., "Permittivity determination of fresh cement-based materials by an open-ended waveguide probe using amplitude-only measurements," Progress In Electromagnetics Research, Vol. 97, 27-43, 2009. Google Scholar
23. Kharkovsky, S. N., M. F. Akay, U. C. Hasar, and C. D. Atis, "Measurement and monitoring of microwave reflection and transmission properties of cement-based materials," IEEE Trans. Instrum. Meas., Vol. 51, No. 6, 1210-1218, 2002. Google Scholar
24. Hasar, U. C., "Free-space nondestructive characterization of young mortar samples," J. Mater. Civ. Eng., Vol. 19, No. 8, 674-682, 2007. Google Scholar
25. Hasar, U. C., "Non-destructive testing of hardened cement specimens at microwave frequencies using a simple free-space method," NDT & E Int., Vol. 42, No. 6, 550-557, 2009. Google Scholar
26. Hasar, U. C., "Nondestructive and noncontacting testing of hardened mortar specimens using a free-space method," J. Mater. Civ. Engn., Vol. 21, No. 9, 484-493, 2009. Google Scholar
27. Hasar, U. C., O. Simsek, and A. C. Aydin, "Application of varying-frequency amplitude-only technique for electrical characterization of hardened cement-based materials," Microw. Opt. Tehcnol. Lett., Vol. 52, No. 4, 801-805, 2010. Google Scholar
28. Hasar, U. C., "Permittivity measurement of thin dielectric materials from reflection-only measurements using one-port vector network analyzer," Progress In Electromagnetics Research, Vol. 95, 365-380, 2009. Google Scholar
29. Hasar, U. C., "A microcontroller-based microwave free-space measurement system for permittivity determination of lossy liquid materials," Rev. Sci. Instrum., Vol. 80, No. 5, 056103-056103-3, 2009. Google Scholar
30. Hasar, U. C., "Elimination of the multiple-solutions ambiguity in permittivity extraction from transmission-only measurements of lossy materials," Microw. Opt. Technol. Lett., Vol. 51, No. 2, 337-341, 2009. Google Scholar
31. Hasar, U. C., "A fast and accurate amplitude-only transmission-reflection method for complex permittivity determination of lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 9, 2129-2135, 2008. Google Scholar
32. Hasar, U. C., "A generalized formulation for permittivity extraction of low-to-high-loss materials from transmission measurement," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 2, 411-418, 2010. Google Scholar
33. Hasar, U. C., "Accurate complex permittivity inversion from measurements of a sample partially filling a waveguide aperture," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 2, 451-457, 2010. Google Scholar
34. Hasar, U. C., "Thickness-independent complex permittivity determination of partially filled thin dielectric materials into rectangular waveguides," Progress In Electromagnetics Research, Vol. 93, 189-203, 2009. Google Scholar
35. Hasar, U. C. and A. Cansiz, "Simultaneous complex permittivity and thickness evaluation of liquid materials parameter measurementsfrom scattering ," Microw. Opt. Tehcnol. Lett., Vol. 52, No. 1, 75-78, 2010. Google Scholar
36. Hasar, U. C., "Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies," Progress In Electromagnetics Research, Vol. 107, 31-46, 2010. Google Scholar
37. Hasar, U. C., "A new microwave method based on transmission scattering parameter measurements for simultaneous broadband and stable permittivity and permeability determination," Progress In Electromagnetics Research, Vol. 93, 161-176, 2009. Google Scholar
38. Hasar, U. C. and O. E. Inan, "Elimination of the dependency of the calibration plane and the sample thickness from complex permittivity measurements of thin materials," Microw. Opt. Technol. Lett., Vol. 51, No. 7, 1642-1646, 2009. Google Scholar
39. Hasar, U. C., C. R. Westgate, and M. Ertugrul, "Noniterative permittivity extraction of lossy liquid materials from reflection asymmetric amplitude-only microwave measurements," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 6, 419-421, 2009. Google Scholar
40. Hasar, U. C., C. R. Westgate, and M. Ertugrul, "Permittivity determination of liquid materials using waveguide measurements for industrial applications," IET Microw. Antennas Propagat., Vol. 4, No. 1, 141-152, 2010. Google Scholar
41. Hasar, U. C. and C. R. Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 2, 471-477, 2009. Google Scholar
42. Hasar, U. C., "Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials," Meas. Sci. Technol., Vol. 19, No. 5, 055706-055706-10, 2008. Google Scholar
43. Hasar, U. C., "Simple calibration plane-invariant method for complex permittivity determination of dispersive and non-dispersive low-loss materials," IET Microw. Antennas Propagat., Vol. 3, No. 4, 630-637, 2009. Google Scholar
44. Hasar, U. C., "Thickness-independent automated constitutive parameters extraction of thin solid and liquid materials from waveguide measurements," Progress In Electromagnetics Research, Vol. 92, 17-32, 2009. Google Scholar
45. Hasar, U. C., "A microwave method for noniterative constitutive parameters determination of thin low-loss or lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 6, 1595-1601, 2009. Google Scholar
46. Hasar, U. C. and O. Simsek, "An accurate complex permittivity method for thin dielectric materials," Progress In Electromagnetics Research, Vol. 91, 123-138, 2009. Google Scholar