Vol. 107
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-08-25
A Metric Function for Fast and Accurate Permittivity Determination of Low-to-High-Loss Materials from Reflection Measurements
By
Progress In Electromagnetics Research, Vol. 107, 397-412, 2010
Abstract
We have derived a one-variable metric function for fast and accurate complex permittivity extraction of low-to-high-loss materials using reflection-only microwave non-resonant measurements at one frequency. The metric function can be modified to facilitate fast computation of the complex permittivity of materials for various applications (e.g., relative complex permittivity measurement of low-loss materials). It is useful as a measurement tool for broadband measurements of complex permittivity of samples with substantiate lengths. In addition, the method is applicable for measurement of complex permittivity of dispersive materials or complex permittivity of non-dispersive samples in limited frequency-band applications, since it is based on point-by-point (or frequency-byfrequency) extraction. It is validated by a numerical analysis and measurements of a liquid sample.
Citation
Ugur Cem Hasar Emin Argun Oral , "A Metric Function for Fast and Accurate Permittivity Determination of Low-to-High-Loss Materials from Reflection Measurements," Progress In Electromagnetics Research, Vol. 107, 397-412, 2010.
doi:10.2528/PIER10071308
http://www.jpier.org/PIER/pier.php?paper=10071308
References

1. Chen, L. F., et al., Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, West Sussex, England, 2004.

2. Kaatze, U., "Techniques for measuring the microwave dielectric properties of materials," Metrologia, Vol. 47, No. 2, S91-S113, 2010.

3. Hebeish, A. A., et al., "Factors affecting the performance of the radar absorbant textile materials of different types and structures," Progress In Electromagnetics Research B, Vol. 3, 219-226, 2008.

4. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.

5. Le Floch, J. M., F. Houndonougbo, V. Madrangeas, D. Cros, M. Guilloux-Viry, and W. Peng, "Thin film materials characterization using TE modes," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 549-559, 2009.

6. Jin, H., S. R. Dong, and D. M. Wang, "Measurement of dielectric constant of thin film materials at microwave frequencies," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 809-817, 2009.

7. Wu, Y. Q., Z. X. Tang, Y. H. Xu, and B. Zhang, "Measuring complex permeability of ferromagnetic thin films using microstrip ," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1303-1311, 2009.

8. Challa, R. K., D. Kajfez, J. R. Gladden, and A. Z. Elsherbeni, "Permittivity measurement with as non-standard waveguide by using TRL calibration and fractional linear data fitting," Progress In Electromagnetics Research B, Vol. 2, 1-13, 2008.

9. He, X., Z. X. Tang, B. Zhang, and Y. Q.Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.

10. Wu, Y. Q., Z. X. Tang, Y. H. Xu, X. He, and B. Zhang, "Permittivity measurement of ferroelectric thin film based on CPW transmission line," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 4, 555-562, 2008.

11. Khalaj-Amirhosseini, K., "Closed form solutions for nonuniform transmission lines," Progress In Electromagnetics Research B, Vol. 2, 243-258, 2008.

12. Valagiannopoulos, C. A., "On measuring the permittivity tensor of an anisotropic material from the transmission coefficients," Progress In Electromagnetics Research B, Vol. 9, 105-116, 2008.

13. Wu, Y., Z. Tang, Y. Yu, and X. He, "A new method to avoid acrowding phenomenon in extracting the permittivity of ferroelectric thin films," Progress In Electromagnetics Research Letters, Vol. 4, 159-166, 2008.

14. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, 1970.

15. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.

16. Bois, K. J., L. F. Handjojo, A. D. Benally, K. Mubarak, and R. Zoughi, "Dielectric plug-loaded two-port transmission line measurement technique for dielectric property characterization of granular and liquid materials," IEEE Trans. Instrum. Meas., Vol. 48, No. 6, 1141-1148, 1999.

17. Williams, T. C., M. A. Stuchly, and P. Saville, "Modified transmission-reflection method for measuring constitutive parameters of thin flexible high-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 5, 1560-1566, 2003.

18. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the Transmission/Reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 8, 1096-1103, 1990.

19. Boughriet, A. H., C. Legrand, and A. Chapoton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 52-57, 1997.

20. Kilic, E., F. Akleman, B. Esen, D. M. Ozaltin, O. Ozdemir, and A. Yapar, "3-D imaging of inhomogeneous materials loaded in a rectangular waveguide," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 5, 1290-1296, 2010.

21. Ness, J., "Broad-band permittivity measurements using the semiautomatic network analyzer," IEEE Trans. Microw. Theory Tech., Vol. 33, No. 11, 1222-1226, 1985.

22. Hasar, U. C., "Permittivity determination of fresh cement-based materials by an open-ended waveguide probe using amplitude-only measurements," Progress In Electromagnetics Research, Vol. 97, 27-43, 2009.

23. Kharkovsky, S. N., M. F. Akay, U. C. Hasar, and C. D. Atis, "Measurement and monitoring of microwave reflection and transmission properties of cement-based materials," IEEE Trans. Instrum. Meas., Vol. 51, No. 6, 1210-1218, 2002.

24. Hasar, U. C., "Free-space nondestructive characterization of young mortar samples," J. Mater. Civ. Eng., Vol. 19, No. 8, 674-682, 2007.

25. Hasar, U. C., "Non-destructive testing of hardened cement specimens at microwave frequencies using a simple free-space method," NDT & E Int., Vol. 42, No. 6, 550-557, 2009.

26. Hasar, U. C., "Nondestructive and noncontacting testing of hardened mortar specimens using a free-space method," J. Mater. Civ. Engn., Vol. 21, No. 9, 484-493, 2009.

27. Hasar, U. C., O. Simsek, and A. C. Aydin, "Application of varying-frequency amplitude-only technique for electrical characterization of hardened cement-based materials," Microw. Opt. Tehcnol. Lett., Vol. 52, No. 4, 801-805, 2010.

28. Hasar, U. C., "Permittivity measurement of thin dielectric materials from reflection-only measurements using one-port vector network analyzer," Progress In Electromagnetics Research, Vol. 95, 365-380, 2009.

29. Hasar, U. C., "A microcontroller-based microwave free-space measurement system for permittivity determination of lossy liquid materials," Rev. Sci. Instrum., Vol. 80, No. 5, 056103-056103-3, 2009.

30. Hasar, U. C., "Elimination of the multiple-solutions ambiguity in permittivity extraction from transmission-only measurements of lossy materials," Microw. Opt. Technol. Lett., Vol. 51, No. 2, 337-341, 2009.

31. Hasar, U. C., "A fast and accurate amplitude-only transmission-reflection method for complex permittivity determination of lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 9, 2129-2135, 2008.

32. Hasar, U. C., "A generalized formulation for permittivity extraction of low-to-high-loss materials from transmission measurement," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 2, 411-418, 2010.

33. Hasar, U. C., "Accurate complex permittivity inversion from measurements of a sample partially filling a waveguide aperture," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 2, 451-457, 2010.

34. Hasar, U. C., "Thickness-independent complex permittivity determination of partially filled thin dielectric materials into rectangular waveguides," Progress In Electromagnetics Research, Vol. 93, 189-203, 2009.

35. Hasar, U. C. and A. Cansiz, "Simultaneous complex permittivity and thickness evaluation of liquid materials parameter measurementsfrom scattering ," Microw. Opt. Tehcnol. Lett., Vol. 52, No. 1, 75-78, 2010.

36. Hasar, U. C., "Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies," Progress In Electromagnetics Research, Vol. 107, 31-46, 2010.

37. Hasar, U. C., "A new microwave method based on transmission scattering parameter measurements for simultaneous broadband and stable permittivity and permeability determination," Progress In Electromagnetics Research, Vol. 93, 161-176, 2009.

38. Hasar, U. C. and O. E. Inan, "Elimination of the dependency of the calibration plane and the sample thickness from complex permittivity measurements of thin materials," Microw. Opt. Technol. Lett., Vol. 51, No. 7, 1642-1646, 2009.

39. Hasar, U. C., C. R. Westgate, and M. Ertugrul, "Noniterative permittivity extraction of lossy liquid materials from reflection asymmetric amplitude-only microwave measurements," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 6, 419-421, 2009.

40. Hasar, U. C., C. R. Westgate, and M. Ertugrul, "Permittivity determination of liquid materials using waveguide measurements for industrial applications," IET Microw. Antennas Propagat., Vol. 4, No. 1, 141-152, 2010.

41. Hasar, U. C. and C. R. Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 2, 471-477, 2009.

42. Hasar, U. C., "Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials," Meas. Sci. Technol., Vol. 19, No. 5, 055706-055706-10, 2008.

43. Hasar, U. C., "Simple calibration plane-invariant method for complex permittivity determination of dispersive and non-dispersive low-loss materials," IET Microw. Antennas Propagat., Vol. 3, No. 4, 630-637, 2009.

44. Hasar, U. C., "Thickness-independent automated constitutive parameters extraction of thin solid and liquid materials from waveguide measurements," Progress In Electromagnetics Research, Vol. 92, 17-32, 2009.

45. Hasar, U. C., "A microwave method for noniterative constitutive parameters determination of thin low-loss or lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 6, 1595-1601, 2009.

46. Hasar, U. C. and O. Simsek, "An accurate complex permittivity method for thin dielectric materials," Progress In Electromagnetics Research, Vol. 91, 123-138, 2009.