1. Balanis, C. A., Antenna Theory: Analysis and Design, 3 Ed., John Wiley & Sons, Inc., Hoboken, 2005.
2. Milligan, T. A., Modern Antenna Design,, John Wiley & Sons, Inc., Hoboken, 2005.
doi:10.1002/0471720615
3. Dehdasht-Heydari, R., H. R. Hassani, and A. R. Mallahzadeh, "Quad ridged horn antenna for UWB applications," Progress In Electromagnetics Research, Vol. 79, 23-38, 2008.
doi:10.2528/PIER07091602 Google Scholar
4. Mallahzadeh, A. R., A. A. Dastranj, and H. R. Hassani, "A novel dual-polarized double-ridged horn antenna for wideband applications," Progress In Electromagnetics Research B, Vol. 1, 67-80, 2008.
doi:10.2528/PIERB07101602 Google Scholar
5. Green, H. E., "The phase centre of a pure mode, smooth wall, conical horn," Progress In Electromagnetics Research B, Vol. 4, 285-298, 2008.
doi:10.2528/PIERB08010705 Google Scholar
6. Fazaelifar, M. and M. R. Fatorehchy, "Design, fabrication and test of parabolic cylinder reflector and horn for increasing the gain of vlasov antenna," Progress In Electromagnetics Research Letters, Vol. 4, 191-203, 2008.
doi:10.2528/PIERL08102403 Google Scholar
7. Amineh, R. K., A. Trehan, and N. K. Nikolova, "TEM horn antenna for ultra-wide band microwave breast imaging," Progress In Electromagnetics Research B, Vol. 13, 59-74, 2009.
doi:10.2528/PIERB08122213 Google Scholar
8. Mallahzadeh, A. R. and F. Karshenas, "Modified TEM horn antenna for broadband applications," Progress In Electromagnetics Research, Vol. 90, 105-119, 2009.
doi:10.2528/PIER08123106 Google Scholar
9. Liu, Y. and S. Gong, "Design of a compact broadband double-ridged horn antenna," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5/6, 765-774, 2010.
doi:10.1163/156939310791036449 Google Scholar
10. Jacobs, B., J. W. Odendaal, and J. Joubert, "The effect of manufacturing and assembling tolerances on the performance of double-ridged horn antennas," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 10, 1279-1290, 2010.
doi:10.1163/156939310791958761 Google Scholar
11. Güney, K., "Simple design method for optimum gain pyramidal horns," AEU --- International Journal of Electronics and Communications, Vol. 55, 205-208, 2001.
doi:10.1078/1434-8411-00031 Google Scholar
12. Güney, K. and D. Karaboga, "New narrow aperture dimension expressions obtained by using a differential evolution algorithm for optimum gain pyramidal horns," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 3, 321-339, 2004.
doi:10.1163/156939304323085694 Google Scholar
13. Güney, K. and N. Sarikaya, "Neural computation of wide aperture dimension of optimum gain pyramidal horn," International Journal of Infrared and Millimeter Waves, Vol. 26, 1043-1057, 2005.
doi:10.1007/s10762-005-6175-y Google Scholar
14. Odendaal, J. W., J. Joubert, and M. J. Prinsloo, "Extended edge wave diffraction model for near-field directivity calculations of horn antennas," IEEE Transactions on Instrumentation and Measurement, Vol. 54, 2469-2473, 2005.
doi:10.1109/TIM.2005.858141 Google Scholar
15. Akdagli, A. and K. Güney, "New wide-aperture-dimension formula obtained by using a particle swarm optimization for optimum gain pyramidal horns," Microwave and Optical Technology Letters, Vol. 48, 1201-1205, 2006.
doi:10.1002/mop.21580 Google Scholar
16. Teo, J. L. and K. T. Selvan, "On the optimum pyramidal-horn design methods," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 16, 561-564, 2006.
doi:10.1002/mmce.20177 Google Scholar
17. Najjar, Y., M. Moneer, and N. Dib, "Design of optimum gain pyramidal horn with improved formulas using particle swarm optimization," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 17, 505-511, 2007.
doi:10.1002/mmce.20245 Google Scholar
18. Ikram, S. and G. Ahmad, "Design & implementation of a standard gain horn antenna for optimized gain and radiation pattern using MathCAD & HFSS," Second International Conference on Electrical Engineering (ICEE 2008), Lahore, Pakistan, 2008, doi:10.1109/ICEE.2008.4553906. Google Scholar
19. Harima, K., M. Sakasai, and K. Fujii, "Determination of gain for pyramidal-horn antenna on basis of phase center location," 2008 IEEE International Symposium on Electromagnetic Compatibility, Detroit, USA, 2008, doi:10.1109/ISEMC.2008.4652010. Google Scholar
20. Baltzis, K. B., "Calculation of the half-power beamwidths of pyramidal horns with arbitrary gain and typical aperture phase error," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 612-614, 2010.
doi:10.1109/LAWP.2010.2055031 Google Scholar
21. Foged, L. J., A. Giacomini, L. Scialacqua, R. Morbidini, and N. Isman, "Comparative investigation of SGH performance prediction formulas, measurements and numerical modelling," Fourth European Conference on Antennas and Propagation (EuCAP), 1-4, paper ID 924, Barcelona, Spain, 2010. Google Scholar
22. Milligan, T., "Scales for rectangular horns," IEEE Antennas and Propagation Magazine, Vol. 42, 79-83, 2000. Google Scholar
23. Kordas, G., K. B. Baltzis, G. S. Miaris, and J. N. Sahalos, "Pyramidal-horn design under constraints on half-power beamwidth," IEEE Antennas and Propagation Magazine, Vol. 44, 102-108, 2002.
doi:10.1109/74.997920 Google Scholar
24. Schelkunoff, S. A., Electromagnetic Waves, D. Van Nostrand Company, Inc., New York, 1943.
25. Aurand, J. F., "Pyramidal horns, Part II: a novel design method for horns of any desired gain and aperture phase error," 1989 IEEE Antennas Propagation Society International Symposium, Vol. 3, 1439-1442, San Jose, USA, 1989. Google Scholar
26. Weisstein, E. W., CRC Concise Encyclopedia of Mathematics, 2 Ed., Chapman & Hall/CRC, Boca Raton, 2002.
doi:10.1201/9781420035223
27. Slayton, W. T., Design and calibration of microwave antenna gain standards, Rep. 4433, US Naval Research Laboratory, Washington DC, USA, 1954.
28. Baltzis, K. B. and K. Natsiouli, "A genetic algorithm based resource allocation scheme for throughput optimization of WCDMA networks," International Review of Automatic Control, Vol. 1, 125-131, 2008. Google Scholar
29. Stanković, Z., B. Milovanović, and N. Donćov, "Hybrid empirical-neural model of loaded microwave cylindrical cavity," Progress In Electromagnetics Research, Vol. 83, 257-277, 2008.
doi:10.2528/PIER08051503 Google Scholar
30. Agastra, E., et al., "Genetic algorithm optimization of high-efficiency wide-band multimodal square horns for discrete lenses," Progress In Electromagnetics Research, Vol. 83, 335-352, 2008.
doi:10.2528/PIER08061806 Google Scholar
31. Rostami, A. and A. Yazdanpanah-Goharrizi, "Hybridization of neural networks and genetic algorithms for identification of complex Bragg gratings," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5/6, 643-664, 2008.
doi:10.1163/156939308784159598 Google Scholar
32. Gürel, L. and Ö. Ergül, "Design and simulation of circular arrays of trapezoidal-tooth log-periodic antennas via genetic optimization," Progress In Electromagnetics Research, Vol. 85, 243-260, 2008.
doi:10.2528/PIER08081809 Google Scholar
33. Su, D. Y., D.-M. Fu, and D. Yu, "Genetic algorithms and method of moments for the design of pifas," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603 Google Scholar
34. Panduro, M. A., C. A. Brizuela, L. I. Balderas, and D. A. Acosta, "A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays," Progress In Electromagnetics Research B, Vol. 13, 171-186, 2009.
doi:10.2528/PIERB09011308 Google Scholar
35. Li, J.-Y. and J. L. Guo, "Optimization technique using differential evolution for yagi-uda antennas," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 449-461, 2009.
doi:10.1163/156939309787612356 Google Scholar
36. Pathak, N., G. K. Mahanti, S. K. Singh, J. K. Mishra, and A. Chakraborty, "Synthesis of thinned planar circular array antennas using modified particle swarm optimization," Progress In Electromagnetics Research Letters, Vol. 12, 87-97, 2009.
doi:10.2528/PIERL09090606 Google Scholar
37. Mangoud, M. A. and H. M. Elragal, "Antenna array pattern synthesis and wide null control using enhanced particle swarm optimization," Progress In Electromagnetics Research B, Vol. 17, 1-14, 2009.
doi:10.2528/PIERB09070205 Google Scholar
38. Li, J.-Y., "A bi-swarm optimizing strategy and its application of antenna design," Journal of Electromagnetic Waves and Applications, Vol. 23, 1877-1886, 2009.
doi:10.1163/156939309789932449 Google Scholar
39. Tokan, F. and F. Gunes, "The multi-objective optimization of non-uniform linear phased arrays using the genetic algorithm," Progress In Electromagnetics Research B, Vol. 17, 135-151, 2009.
doi:10.2528/PIERB09072309 Google Scholar
40. Wang, A.-N. and W.-X. Zhang, "Design and optimization of broadband circularly polarized wide-slot antenna," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2229-2236, 2009.
doi:10.1163/156939309790109289 Google Scholar
41. Goudos, S. K., Z. Zaharis, K. B. Baltzis, C. Hilas, and J. N. Sahalos, "A comparative study of particle swarm optimization and differential evolution on radar absorbing materials for EMC applications," EMC Europe Workshop 2009 --- Materials in EMC Applications, 56-59, Athens, Greece, 2009, doi:10.1109/EMCEUROPE.2009.5189697. Google Scholar
42. Wang, W.-T., S.-X. Gong, Y.-J. Zhang, F.-T. Zha, J. Ling, and T. Wan, "Low RCS dipole array synthesis based on MoM-PSO hybrid algorithms," Progress In Electromagnetics Research, Vol. 94, 119-132, 2009.
doi:10.2528/PIER09060902 Google Scholar
43. Goudos, S. K., K. B. Baltzis, C. Bachtsevanidis, and J. N. Sahalos, "Cell-to-switch assignment in cellular networks using barebones particle swarm optimization," IEICE Electronic Express, Vol. 7, 254-260, 2010.
doi:10.1587/elex.7.254 Google Scholar
44. Vakula, D. and N. V. S. N. Sarma, "Using neural networks for fault detection in planar antenna arrays," Progress In Electromagnetics Research Letters, Vol. 14, 21-30, 2010.
doi:10.2528/PIERL10030401 Google Scholar
45. Li, G., S. Yang, M. Huang, and Z. Nie, "Sidelobe suppression in time modulated linear arrays with unequal element spacing," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5/6, 775-783, 2010.
doi:10.1163/156939310791036368 Google Scholar
46. Pozar, D. M., Microwave Engineering, 3 Ed., John Wiley & Sons, Inc., Hoboken, 2005.
47. Hastie, T., R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2 Ed., Springer, New York, 2008.
48. Fox, J., Applied Regression Analysis and Generalized Linear Models, 2 Ed., Sage Publications, Inc., Los Angeles, 2008.
49. Wu, B., T. Su, B. Li, and C. H. Liang, "Design of tubular filter based on curve-fitting method," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1071-1080, 2006.
doi:10.1163/156939306776930231 Google Scholar
50. Wang, Y. G., J. Wang, Z. Q. Zhao, and J. Y. Yang, "A novel method to calculate the phase center of antennas," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2/3, 239-250, 2008.
doi:10.1163/156939308784160631 Google Scholar
51. Li, Q., X. Lai, B. Wu, and T. Su, "Novel wideband coaxial filter with high selectivity in low rejection band," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8/9, 1155-1163, 2009. Google Scholar
52. Islam, M. T., M. Moniruzzaman, N. Misran, and M. N. Shakib, "Curve fitting based particle swarm optimization for UWB patch antenna," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17/18, 2421-2432, 2009. Google Scholar
53. Baltzis, K. B., "Empirical description of node-to-node distance density in non-overlapping wireless networks," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 9, 57-68, 2010. Google Scholar
54. Okabe, S., T. Tsuboi, G. Ueta, J. Takami, and H. Hirose, "Basic study of fitting method for base curve extraction in lightning impulse test techniques," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 17, 2-4, 2010.
doi:10.1109/TDEI.2010.5411995 Google Scholar
55. Deschrijver, D. and T. Dhaene, "Rational fitting of S-parameter frequency samples with maximum absolute error control," IEEE Microwave and Wireless Components. Letters, Vol. 20, 247-249, 2010.
doi:10.1109/LMWC.2010.2045575 Google Scholar
56. De Carlo, D. and S. Tringàli, "Automatic design of circular SIW resonators by a hybrid approach based on polynomial fitting and SVRMS," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5/6, 735-774, 2010.
doi:10.1163/156939310791036421 Google Scholar
57. Baltzis, K. B., "Polynomial-based evaluation of the impact of aperture phase taper on the gain of rectangular horns," Journal of Electromagnetic Analysis and Applications, Vol. 2, 424-430, 2010.
doi:10.4236/jemaa.2010.27055 Google Scholar
58. Philips, G. M., Interpolation and Approximation by Polynomials, Springer-Verlag Inc., New York, 2003.
59. Liu, X. F., Y. C. Jiao, F. S. Zhang, and Y. Wen, "Approximation method for reconstruction of 3-D antenna radiation patterns," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2351-2358, 2007.
doi:10.1163/156939307783134380 Google Scholar
60. Yang, P., F. Yang, Z.-P. Nie, B. Li, and X. Tang, "Robust adaptive beamformer using interpolation technique for conformal antenna array," Progress In Electromagnetics Research B, Vol. 23, 215-228, 2010.
doi:10.2528/PIERB10061504 Google Scholar
61. Sahalos, J. N., Orthogonal Methods for Array Synthesis: Theory and the ORAMA Computer Tool, John Wiley & Sons Ltd., Chichester, 2006.
doi:10.1002/0470028548
62. Selvan, K. T., "Accurate design method for pyramidal horns of any desired gain and aperture phase error," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 31-32, 2008.
doi:10.1109/LAWP.2007.914119 Google Scholar
63. Selvan, K. T., "Derivation of a condition for the normal gain behavior of pyramidal horns," IEEE Transactions on Antennas Propagation, Vol. 48, 1782-1784, 2000.
doi:10.1109/8.900237 Google Scholar
64. Aryshev, A., et al., "Development of microwave and soft X-ray sources based on coherent radiation and Thomson scattering," Eighth International Symposium on Radiation from Relativistic Electrons in Periodic Structures, Moscow, Russian Federation, 2009, doi:10.1088/1742-6596/236/1/012009. Google Scholar