Vol. 109
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-10-13
Signal Analysis of Apertureless Scanning Near-Field Optical Microscopy with Superlens
By
Progress In Electromagnetics Research, Vol. 109, 83-106, 2010
Abstract
Apertureless scanning near-field optical microscopy (A-SNOM) with a superlens is a novel nano-optical system for sub-wavelength imaging purposes. This study presents a quantitative model for analyzing the heterodyne signals obtained from an A-SNOM fitted with a superlens at various harmonics of the AFM tip vibration frequency. It is shown that the image resolution is determined not only by the tip radius, but also by the superlens transmission coefficient in the high evanescent wave vector Kx. Moreover, the analytical results show that the images acquired from the A-SNOM/superlens system are adversely affected by a signal contrast problem as a result of the noise generated by the tip-superlens interaction electric field. However, it is shown that this problem can be easily resolved using a background noise compensation method, thereby resulting in a significant improvement in the signal-to-background (S/B) ratio. The feasibility of utilizing the system for maskless nanolithography applications is discussed. It is shown that the A-SNOM/superlens system with the proposed noise compensation scheme yields a dramatic improvement in the signal intensity and S/B ratio compared to that of a conventional A-SNOM with a bare tip only.
Citation
Chin-Ho Chuang, and Yu-Lung Lo, "Signal Analysis of Apertureless Scanning Near-Field Optical Microscopy with Superlens," Progress In Electromagnetics Research, Vol. 109, 83-106, 2010.
doi:10.2528/PIER10081102
References

1. Betzig, E. and M. Isaacson, "Collection mode near-field scanning optical microscopy," Appl. Phys. Lett., Vol. 51, 2088-2090, 1987.        Google Scholar

2. Betzig, E., J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffraction barrier-optical microscopy on a nanometric scale," Science, Vol. 251, 1468-1470, 1991.        Google Scholar

3. Kirstein, S., "Scanning near-field optical microscopy," Current Opinion in Colloid & Interface Science, Vol. 4, 256-264, 1999.        Google Scholar

4. Hillenbrand, R. and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett., Vol. 85, 3029-3032, 2000.        Google Scholar

5. Knoll, B. and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun., Vol. 182, 321-328, 2000.        Google Scholar

6. Hillenbrand, R., T. Taubner, and F. Keilmann , "Phonon-enhanced light-matter interaction at the nanometer scale," Nature, Vol. 418, 159-162, 2002.        Google Scholar

7. Novotny, L., E. Z. Sanchez, and X. S. Xie, "Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Ultramicrosc, Vol. 71, 21-29, 1998.        Google Scholar

8. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.        Google Scholar

9. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, "Metamaterial and negative refractive index," Science, Vol. 305, 788-792, 2004.        Google Scholar

10. Shalaev, V. M., "Optical negative-index metamaterials," Nat. Photonics, Vol. 1, 41-48, 2007.        Google Scholar

11. Wang, G., Y. Gong, and H. Wang, "On the size of left-handed material lens for near-fid target detection by focus scanning," Progress In Electromagnetics Research, Vol. 87, 345-361, 2008.        Google Scholar

12. Wang, R., J. Zhou, C. Sun, L. Kang, Q. Zhao, and J. Sun, "Left-handed materials based on crystal lattice vibration," Progress In Electromagnetics Research Letters, Vol. 10, 145-155, 2009.        Google Scholar

13. Srivastava, R., S. Srivastava, and S. P. Ojha, "Negative refraction by photonic crystal," Progress In Electromagnetics Research B, Vol. 2, 15-26, 2008.        Google Scholar

14. Fang, N., Z. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express, Vol. 11, 682-687, 2003.        Google Scholar

15. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534-537, 2005.        Google Scholar

16. Taubner, T., D. Korobkin, Y. Urzhumov, G. Shvet, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science, Vol. 313, 1595, 2006.        Google Scholar

17. Chuang, C. H. and Y. L. Lo, "Analytical analysis of modulated signal in apertureless scanning near-field optical microscopy," Opt. Express, Vol. 15, 15782-15796, 2007.        Google Scholar

18. Chuang, C. H. and Y. L. Lo, "An analysis of heterodyne signals in apertureless scanning near-field optical microscopy," Opt. Express, Vol. 16, 17982-18003, 2008.        Google Scholar

19. Podolskiy, V. A. and E. E. Narimanov, "Near-sighted superlens," Opt. Lett., Vol. 30, 75-77, 2005.        Google Scholar

20. Ocelic, N., A. Huber, and R. Hillenbrand, "Pseudoheterodyne detection for background-free near-field spectroscopy," Appl. Phys. Lett., Vol. 89, 101124, 2006.        Google Scholar

21. Sun, J., P. S. Carney, and J. C. Schotland, "Strong tip effect near-field scanning optical tomography," J. Appl. Phys., Vol. 102, 103103, 2007.        Google Scholar

22. Jackson, J. D., Classical Electrodynamics, Wiley, 1999.

23. Lee, K., H. Park, J. Kim, G. Kang, and K. Kim, "Improved image quality of a Ag slab near-field superlens with intrinsic loss of absorption," Opt. Express, Vol. 16, 1711-1718, 2008.        Google Scholar

24. Fujii, M., W. Freude, and J. Leuthold, "Numerical prediction of minimum sub-diffraction-limit image generated by silver surface plasmon lenses," Opt. Express, Vol. 16, 21039-21052, 2008.        Google Scholar

25. Veselago, V., L. Braginsky, V. Shklover, and C. Hafner, "Negative refractive index materials," J. Comput. Theor. Nanosci., Vol. 3, 1-30, 2006.        Google Scholar

26. Korobkin, D., Y. Urzhumov, and G. Shvet, "Enhanced near-field resolution in midinfrared using metamaterials," J. Opt. Soc. Am. B, Vol. 23, 468-478, 2006.        Google Scholar

27. Smith, D. R., D. S. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramarkrishna, and J. B. Pendry, "Limitations on sub diffraction imaging with a negative index slab," Appl. Phys. Lett., Vol. 82, 1506-1508, 2003.        Google Scholar

28. Stefanon, I., S. Blaize, A. Bruyant, S Aubert, G. Lerondel, R. Bachelot, and P. Royer, "Heterodyne detection of guided waves using a scattering-type scanning near-field optical microscope," Opt. Express, Vol. 13, 5553-5564, 2005.        Google Scholar

29. Lo, Y. L. and C. H. Chuang, "New synthetic-heterodyne demodulation for an optical fiber interferometry," J. Quantum Electron., Vol. 37, 658-663, 2001.        Google Scholar

30. Walford, J. N., J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevich, and P. Royer, "Influence of tip modulation on image formation in scanning near-field optical microscopy," J. Appl. Phys., Vol. 89, 5159-5169, 2001.        Google Scholar

31. Bortchagovsky, E. G., "Superlens approach to a long-focus near-field probe," Opt. Lett., Vol. 33, 1765-1767, 2008.        Google Scholar

32. H'dhili, F., R. Bachelot, G. Lerondel, D. Barchiesi, and P. Royer, "Near-field optics: Direct observation of the field enhancement below an apertureless probe using a photosensitive polymer," Appl. Phys. Lett., Vol. 79, 4019-4021, 2001.        Google Scholar

33. Tseng, A. A., "Recent developments in nanofabrication using scanning near-field optical microscope lithography," Opt. Laser Technol., Vol. 39, 514-526, 2007.        Google Scholar