1. Betzig, E. and M. Isaacson, "Collection mode near-field scanning optical microscopy," Appl. Phys. Lett., Vol. 51, 2088-2090, 1987. Google Scholar
2. Betzig, E., J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffraction barrier-optical microscopy on a nanometric scale," Science, Vol. 251, 1468-1470, 1991. Google Scholar
3. Kirstein, S., "Scanning near-field optical microscopy," Current Opinion in Colloid & Interface Science, Vol. 4, 256-264, 1999. Google Scholar
4. Hillenbrand, R. and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett., Vol. 85, 3029-3032, 2000. Google Scholar
5. Knoll, B. and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun., Vol. 182, 321-328, 2000. Google Scholar
6. Hillenbrand, R., T. Taubner, and F. Keilmann , "Phonon-enhanced light-matter interaction at the nanometer scale," Nature, Vol. 418, 159-162, 2002. Google Scholar
7. Novotny, L., E. Z. Sanchez, and X. S. Xie, "Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Ultramicrosc, Vol. 71, 21-29, 1998. Google Scholar
8. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000. Google Scholar
9. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, "Metamaterial and negative refractive index," Science, Vol. 305, 788-792, 2004. Google Scholar
10. Shalaev, V. M., "Optical negative-index metamaterials," Nat. Photonics, Vol. 1, 41-48, 2007. Google Scholar
11. Wang, G., Y. Gong, and H. Wang, "On the size of left-handed material lens for near-fid target detection by focus scanning," Progress In Electromagnetics Research, Vol. 87, 345-361, 2008. Google Scholar
12. Wang, R., J. Zhou, C. Sun, L. Kang, Q. Zhao, and J. Sun, "Left-handed materials based on crystal lattice vibration," Progress In Electromagnetics Research Letters, Vol. 10, 145-155, 2009. Google Scholar
13. Srivastava, R., S. Srivastava, and S. P. Ojha, "Negative refraction by photonic crystal," Progress In Electromagnetics Research B, Vol. 2, 15-26, 2008. Google Scholar
14. Fang, N., Z. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express, Vol. 11, 682-687, 2003. Google Scholar
15. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534-537, 2005. Google Scholar
16. Taubner, T., D. Korobkin, Y. Urzhumov, G. Shvet, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science, Vol. 313, 1595, 2006. Google Scholar
17. Chuang, C. H. and Y. L. Lo, "Analytical analysis of modulated signal in apertureless scanning near-field optical microscopy," Opt. Express, Vol. 15, 15782-15796, 2007. Google Scholar
18. Chuang, C. H. and Y. L. Lo, "An analysis of heterodyne signals in apertureless scanning near-field optical microscopy," Opt. Express, Vol. 16, 17982-18003, 2008. Google Scholar
19. Podolskiy, V. A. and E. E. Narimanov, "Near-sighted superlens," Opt. Lett., Vol. 30, 75-77, 2005. Google Scholar
20. Ocelic, N., A. Huber, and R. Hillenbrand, "Pseudoheterodyne detection for background-free near-field spectroscopy," Appl. Phys. Lett., Vol. 89, 101124, 2006. Google Scholar
21. Sun, J., P. S. Carney, and J. C. Schotland, "Strong tip effect near-field scanning optical tomography," J. Appl. Phys., Vol. 102, 103103, 2007. Google Scholar
22. Jackson, J. D., Classical Electrodynamics, Wiley, 1999.
23. Lee, K., H. Park, J. Kim, G. Kang, and K. Kim, "Improved image quality of a Ag slab near-field superlens with intrinsic loss of absorption," Opt. Express, Vol. 16, 1711-1718, 2008. Google Scholar
24. Fujii, M., W. Freude, and J. Leuthold, "Numerical prediction of minimum sub-diffraction-limit image generated by silver surface plasmon lenses," Opt. Express, Vol. 16, 21039-21052, 2008. Google Scholar
25. Veselago, V., L. Braginsky, V. Shklover, and C. Hafner, "Negative refractive index materials," J. Comput. Theor. Nanosci., Vol. 3, 1-30, 2006. Google Scholar
26. Korobkin, D., Y. Urzhumov, and G. Shvet, "Enhanced near-field resolution in midinfrared using metamaterials," J. Opt. Soc. Am. B, Vol. 23, 468-478, 2006. Google Scholar
27. Smith, D. R., D. S. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramarkrishna, and J. B. Pendry, "Limitations on sub diffraction imaging with a negative index slab," Appl. Phys. Lett., Vol. 82, 1506-1508, 2003. Google Scholar
28. Stefanon, I., S. Blaize, A. Bruyant, S Aubert, G. Lerondel, R. Bachelot, and P. Royer, "Heterodyne detection of guided waves using a scattering-type scanning near-field optical microscope," Opt. Express, Vol. 13, 5553-5564, 2005. Google Scholar
29. Lo, Y. L. and C. H. Chuang, "New synthetic-heterodyne demodulation for an optical fiber interferometry," J. Quantum Electron., Vol. 37, 658-663, 2001. Google Scholar
30. Walford, J. N., J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevich, and P. Royer, "Influence of tip modulation on image formation in scanning near-field optical microscopy," J. Appl. Phys., Vol. 89, 5159-5169, 2001. Google Scholar
31. Bortchagovsky, E. G., "Superlens approach to a long-focus near-field probe," Opt. Lett., Vol. 33, 1765-1767, 2008. Google Scholar
32. H'dhili, F., R. Bachelot, G. Lerondel, D. Barchiesi, and P. Royer, "Near-field optics: Direct observation of the field enhancement below an apertureless probe using a photosensitive polymer," Appl. Phys. Lett., Vol. 79, 4019-4021, 2001. Google Scholar
33. Tseng, A. A., "Recent developments in nanofabrication using scanning near-field optical microscope lithography," Opt. Laser Technol., Vol. 39, 514-526, 2007. Google Scholar