1. Liberti, J. C. and T. S. Rappaport, "A geometrically based model for line of sight multipath radio channels," IEEE Vehicular Technology Conf., 844-848, Apr. 1996. Google Scholar
2. Norklit, O. and J. Andersen, "Diffuse channel model and experimental results for array antennas in mobile environments," IEEE Trans. Antennas and Propagt., Vol. 46, No. 6, 834-843, Jun. 1998. Google Scholar
3. Ertel, R. B. and J. H. Reed, "Angle and time of arrival statistics for circular and elliptical scattering models," IEEE J. Sel. Areas Commun., Vol. 17, 1829-1840, Nov. 1999. Google Scholar
4. Janaswamy, R., "Angle and time of arrival statistics for the Gaussian scatter density model," IEEE Trans. Wireless Commun., Vol. 1, 488-497, Jul. 2002. Google Scholar
5. Petrus, P., J. Reed, and T. Rappaport, "Geometrical-based statistical macrocell channel model for mobile environments," IEEE Trans. Commun., Vol. 50, No. 3, 495-502, Mar. 2002. Google Scholar
6. Olenko, A., K. Wong, and M. Abdulla, "Analytically derived TOA-DOA distributions of uplink/downlink wireless-cellular multipaths arisen from scatterers with an inverted-parabolic spatial distribution around the mobile," IEEE Signal Processing Letters, Vol. 12, No. 7, 516-519, Jul. 2005. Google Scholar
7. Imai, T. and T. Taga, "Statistical scattering model in urban propagation environment," IEEE Trans. Veh. Technol., Vol. 55, No. 4, 1081-1093, Jul. 2006. Google Scholar
8. Jiang, L. and S. Y. Tan, "Geometrically based statistical channel models for outdoor and indoor propagation environments," IEEE Trans. Veh. Technol., Vol. 56, No. 6, 3587-3593, Nov. 2007. Google Scholar
9. Khan, N. M., M. T. Simsim, and P. B. Rapajic, "A generalized model for the spatial characteristics of the cellular mobile channel," IEEE Trans. Veh. Technol., Vol. 57, No. 1, 22-37, Jan. 2008. Google Scholar
10. Mahmoud, S. S., F. S. Al-Qahtani, Z. M. Hussain, and A. Gopalakrishnan, "Spatial and temporal statistics for the geometrical-based hyperbolic macrocell channel model," Digital Signal Processing, Vol. 18, No. 2, 151-167, Mar. 2008. Google Scholar
11. Le, K. N., "On angle-of-arrival and time-of-arrival statistics of geometric scattering channels," IEEE Trans. on Veh. Technol., Vol. 58, No. 8, 4257-4264, Oct. 2009. Google Scholar
12. Chen, Y., Z. Zhang, L. Hu, and P. Rapajic, "Geometry-based statistical model for radio propagation in rectangular office buildings," Progress In Electromagnetics Research B, Vol. 17, 187-212, 2009. Google Scholar
13. Chen, Y., Z. Zhang, and T. Qin, "Geometrically based channel model for indoor radio propagation with directional antennas," Progress In Electromagnetics Research B, Vol. 20, 109-124, 2010. Google Scholar
14. Janaswamy, R., "Angle of arrival statistics for a 3D spheroid model," IEEE Trans. Veh. Technol., Vol. 51, No. 5, 1242-1247, Sep. 2002. Google Scholar
15. Olenko, A. Y., K. T.Wong, S. A. Qasmi, and J. Ahmadi-Shokouh, "Analytically derived uplink/downlink TOA and 2D DOA distributions with scatterers in a 3D hemispheroid surrounding the mobile," IEEE Trans. Antennas Propagat., Vol. 54, No. 9, 2446-2454, Sep. 2006. Google Scholar
16. Baltzis, K. B. and J. N. Sahalos, "A simple 3D geometric channel model for macrocell mobile communication," Wireless Pers. Commun., Vol. 51, No. 2, 329-347, Oct. 2008. Google Scholar
17. Nawaz, S. J., B. H. Qureshi, and N. M. Khan, "A generalized 3D scattering model for macrocell environment with directional antenna at BS," IEEE Trans. Veh. Technol., Vol. 59, No. 7, 3193-3204, Sep. 2010. Google Scholar
18. Fuhl, J., J. P. Rossi, and E. Bonek, "High-resolution 3D direction-of-arrival determination for urban mobile radio," IEEE Trans. Antennas Propagat., Vol. 45, 672-682, Apr. 1997. Google Scholar
19. Kuchar, A., J. P. Rossi, and E. Bonek, "Directional macro-cell channel characterization from urban measurements," IEEE Trans. Antennas Propagt., Vol. 48, No. 2, 137-146, 2000. Google Scholar
20. Laurila, J., K. Kalliola, M. Toeltsch, K. Hugl, P. Vainikainen, and E. Bonek, "Wide-band 3D characterization of mobile radio channels in urban environment," IEEE Trans. Antennas Propagt., Vol. 50, No. 2, 233-243, Feb. 2002. Google Scholar
21. Kalliola, K., H. Laitinen, P. Vainikainen, M. Toeltsch, J. Laurila, and E. Bonek, "3D double-directional radio channel characterization for urban macrocellular applications," IEEE Trans. Antenna and Propagat., Vol. 51, No. 11, 3122-3133, Nov. 2003. Google Scholar
22. Gurrieri, L. E., T. J. Willink, A. Petosa, and S. Noghanian, "Characterization oCharacterization of the angle, delay and polarization off the angle, delay and polarization of multipath signals for indoor environments," IEEE Trans. Antennas Propagat., Vol. 56, No. 8, 2710-2719, Aug. 2008. Google Scholar
23. Liberti, J. C. and T. S. Rappaport, Smart Antennas for Wireless Communcations: IS-95 and Third Generation CDMA Applications, Prentice Hall, 1999.
24. Pedersen, K. I., "A stochastic model of the temporal and azimuthal dispersion seen at the base station in outdoor propagation environments," IEEE Trans. Veh. Technol., Vol. 49, 437-447, Mar. 2000. Google Scholar
25. Spencer, Q. H., B. D. Jeffs, M. A. Jensen, and A. L. Swindlehurst, "Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel," IEEE J. Sel. Areas Commun., Vol. 18, No. 3, 347-360, Mar. 2000. Google Scholar
26. Cramer, R. J.-M., R. A. Scholtz, and M. Z. Win, "Evaluation of an ultrawideband propagation channel," IEEE Trans. Antennas Propagt., Vol. 50, No. 5, 561-570, May 2002. Google Scholar