Vol. 109
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-10-21
Angle and Time of Arrival Statistics of a Three Dimensional Geometrical Scattering Channel Model for Indoor and Outdoor Propagation Environments
By
Progress In Electromagnetics Research, Vol. 109, 191-209, 2010
Abstract
In this paper, a three dimensional geometrical scattering channel model for indoor and outdoor wireless propagation environments is introduced. It is based on the assumption that the scatterers are distributed within a spheroid, in which the mobile station and base station are located at the spheroid's foci. This model captures both the spatial and temporal statistical distributions of the received multipath signals. Several angle of arrival and time of arrival probability density functions of the received multipath signals are provided in compact forms. The angle of arrival probability density functions are obtained in terms of both the azimuth and elevation angles. Numerical results are presented to illustrate and verify the derived expressions. To validate the model, it has been compared against some available two dimensional models and measured data.
Citation
Mohammad Alsehaili, Sima Noghanian, Abdel Sebak, and Douglas A. Buchanan, "Angle and Time of Arrival Statistics of a Three Dimensional Geometrical Scattering Channel Model for Indoor and Outdoor Propagation Environments," Progress In Electromagnetics Research, Vol. 109, 191-209, 2010.
doi:10.2528/PIER10081106
References

1. Liberti, J. C. and T. S. Rappaport, "A geometrically based model for line of sight multipath radio channels," IEEE Vehicular Technology Conf., 844-848, Apr. 1996.

2. Norklit, O. and J. Andersen, "Diffuse channel model and experimental results for array antennas in mobile environments," IEEE Trans. Antennas and Propagt., Vol. 46, No. 6, 834-843, Jun. 1998.

3. Ertel, R. B. and J. H. Reed, "Angle and time of arrival statistics for circular and elliptical scattering models," IEEE J. Sel. Areas Commun., Vol. 17, 1829-1840, Nov. 1999.

4. Janaswamy, R., "Angle and time of arrival statistics for the Gaussian scatter density model," IEEE Trans. Wireless Commun., Vol. 1, 488-497, Jul. 2002.

5. Petrus, P., J. Reed, and T. Rappaport, "Geometrical-based statistical macrocell channel model for mobile environments," IEEE Trans. Commun., Vol. 50, No. 3, 495-502, Mar. 2002.

6. Olenko, A., K. Wong, and M. Abdulla, "Analytically derived TOA-DOA distributions of uplink/downlink wireless-cellular multipaths arisen from scatterers with an inverted-parabolic spatial distribution around the mobile," IEEE Signal Processing Letters, Vol. 12, No. 7, 516-519, Jul. 2005.

7. Imai, T. and T. Taga, "Statistical scattering model in urban propagation environment," IEEE Trans. Veh. Technol., Vol. 55, No. 4, 1081-1093, Jul. 2006.

8. Jiang, L. and S. Y. Tan, "Geometrically based statistical channel models for outdoor and indoor propagation environments," IEEE Trans. Veh. Technol., Vol. 56, No. 6, 3587-3593, Nov. 2007.

9. Khan, N. M., M. T. Simsim, and P. B. Rapajic, "A generalized model for the spatial characteristics of the cellular mobile channel," IEEE Trans. Veh. Technol., Vol. 57, No. 1, 22-37, Jan. 2008.

10. Mahmoud, S. S., F. S. Al-Qahtani, Z. M. Hussain, and A. Gopalakrishnan, "Spatial and temporal statistics for the geometrical-based hyperbolic macrocell channel model," Digital Signal Processing, Vol. 18, No. 2, 151-167, Mar. 2008.

11. Le, K. N., "On angle-of-arrival and time-of-arrival statistics of geometric scattering channels," IEEE Trans. on Veh. Technol., Vol. 58, No. 8, 4257-4264, Oct. 2009.

12. Chen, Y., Z. Zhang, L. Hu, and P. Rapajic, "Geometry-based statistical model for radio propagation in rectangular office buildings," Progress In Electromagnetics Research B, Vol. 17, 187-212, 2009.

13. Chen, Y., Z. Zhang, and T. Qin, "Geometrically based channel model for indoor radio propagation with directional antennas," Progress In Electromagnetics Research B, Vol. 20, 109-124, 2010.

14. Janaswamy, R., "Angle of arrival statistics for a 3D spheroid model," IEEE Trans. Veh. Technol., Vol. 51, No. 5, 1242-1247, Sep. 2002.

15. Olenko, A. Y., K. T.Wong, S. A. Qasmi, and J. Ahmadi-Shokouh, "Analytically derived uplink/downlink TOA and 2D DOA distributions with scatterers in a 3D hemispheroid surrounding the mobile," IEEE Trans. Antennas Propagat., Vol. 54, No. 9, 2446-2454, Sep. 2006.

16. Baltzis, K. B. and J. N. Sahalos, "A simple 3D geometric channel model for macrocell mobile communication," Wireless Pers. Commun., Vol. 51, No. 2, 329-347, Oct. 2008.

17. Nawaz, S. J., B. H. Qureshi, and N. M. Khan, "A generalized 3D scattering model for macrocell environment with directional antenna at BS," IEEE Trans. Veh. Technol., Vol. 59, No. 7, 3193-3204, Sep. 2010.

18. Fuhl, J., J. P. Rossi, and E. Bonek, "High-resolution 3D direction-of-arrival determination for urban mobile radio," IEEE Trans. Antennas Propagat., Vol. 45, 672-682, Apr. 1997.

19. Kuchar, A., J. P. Rossi, and E. Bonek, "Directional macro-cell channel characterization from urban measurements," IEEE Trans. Antennas Propagt., Vol. 48, No. 2, 137-146, 2000.

20. Laurila, J., K. Kalliola, M. Toeltsch, K. Hugl, P. Vainikainen, and E. Bonek, "Wide-band 3D characterization of mobile radio channels in urban environment," IEEE Trans. Antennas Propagt., Vol. 50, No. 2, 233-243, Feb. 2002.

21. Kalliola, K., H. Laitinen, P. Vainikainen, M. Toeltsch, J. Laurila, and E. Bonek, "3D double-directional radio channel characterization for urban macrocellular applications," IEEE Trans. Antenna and Propagat., Vol. 51, No. 11, 3122-3133, Nov. 2003.

22. Gurrieri, L. E., T. J. Willink, A. Petosa, and S. Noghanian, "Characterization oCharacterization of the angle, delay and polarization off the angle, delay and polarization of multipath signals for indoor environments," IEEE Trans. Antennas Propagat., Vol. 56, No. 8, 2710-2719, Aug. 2008.

23. Liberti, J. C. and T. S. Rappaport, Smart Antennas for Wireless Communcations: IS-95 and Third Generation CDMA Applications, Prentice Hall, 1999.

24. Pedersen, K. I., "A stochastic model of the temporal and azimuthal dispersion seen at the base station in outdoor propagation environments," IEEE Trans. Veh. Technol., Vol. 49, 437-447, Mar. 2000.

25. Spencer, Q. H., B. D. Jeffs, M. A. Jensen, and A. L. Swindlehurst, "Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel," IEEE J. Sel. Areas Commun., Vol. 18, No. 3, 347-360, Mar. 2000.

26. Cramer, R. J.-M., R. A. Scholtz, and M. Z. Win, "Evaluation of an ultrawideband propagation channel," IEEE Trans. Antennas Propagt., Vol. 50, No. 5, 561-570, May 2002.