Vol. 112
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-01-10
Inhibition of Bone Formation by High Intensity Pulsed Electromagnetic Field in Mc3t3-E1 Cells
By
Progress In Electromagnetics Research, Vol. 112, 139-153, 2011
Abstract
To investigate the effects of pulsed electromagnetic field (PEMF) with high electric field intensity on bone formation in murine osteoblast-like MC3T3-E1 cells, proliferation, alkaline phosphotase (ALP) activity, mineralized nodule formation, Collagen Type I (COL-I) and core-binding factor (Cbf)a1 mRNA expression, and bone morphogenetic protein (BMP)2/4 and mothers against decapentaplegic (Smad)1/5/8 protein expression were examined in cultured MC3T3-E1 cells after exposure to PEMF at the field intensities of 0kV/m, 50kV/m or 400kV/m for 400 consecutive pulses daily for 7 consecutive days. After 50 kV/m of PEMF exposure, none of the above parameters of MC3T3-E1 cells changed significantly when compared to the control groups. However, the proliferation, ALP activity and mineralized nodule formation of MC3T3-E1 cells in 400 kV/m PEMF exposure groups decreased significantly although COL-I and Cbfa1 mRNA expression and BMP2/4 and Smad1/5/8 protein expression did not change. The PEMF we used at high electric field intensity suppressed proliferation, differentiation and mineralization of MC3T3-E1 cells in culture and appeared to be harmful for bone formation.
Citation
Kangchu Li Yanping Hui Shirong Ma Guirong Ding Yao Guo Junye Liu Yurong Li Guozhen Guo , "Inhibition of Bone Formation by High Intensity Pulsed Electromagnetic Field in Mc3t3-E1 Cells," Progress In Electromagnetics Research, Vol. 112, 139-153, 2011.
doi:10.2528/PIER10110203
http://www.jpier.org/PIER/pier.php?paper=10110203
References

1. Bassett, C. A., "Beneficial effects of electromagnetic fields," J. Cell. Biochem., Vol. 51, 387-393, 1993.

2. Walker, N., C. Denegar and J. Preische, "Low-intensity pulsed ultrasound and pulsed electromagnetic field in the treatment of tibial fractures: A systematic review," J. Athl. Train., Vol. 42, 530-535, 2007.

3. Liboff, A. R., T. Williams, Jr., D. M. Strong, R. Wistar, and Jr., "Timevarying magnetic fields: Effect on the DNA synthesis," Science, Vol. 223, 818-819, 1984.
doi:10.1126/science.6695183

4. Ozawa, H., E. Abe, Y. Shibasaki, T. Fukuhara, and T. Suda, "Electric fields stimulate DNA synthesis of mouse osteoblast-like cells (MC3T3-E1) by a mechanism involving calcium ions," J. Cell. Physiol., Vol. 138, 477-483, 1989.
doi:10.1002/jcp.1041380306

5. Diniz, P., K. Shomura, K. Soejima, and G. Ito, "Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts ," Bioelectromagnetics, Vol. 23, 398-405, 2002.
doi:10.1002/bem.10032

6. De Mattei, M., N. Gagliano, C. Moscheni, C. Dellavia, C. Calastrini, A. Pellati, M. Gioia, A. Caruso, and G. Stabellini, "Changes in polyamines, c-myc and c-fos gene expression in osteoblast-like cells exposed to pulsed electromagnetic fields," Bioelectromagnetics, Vol. 26, 207-214, 2005.
doi:10.1002/bem.20068

7. Icaro Cornaglia, A., M. Casasco, F. Riva, A. Farina, L. Fassina, L. Visai, and A. Casasco, "Stimulation of osteoblast growth by an electromagnetic field in a model of bone-like construct," Eur. J. Histochem., Vol. 50, 199-204, 2006.

8. Takano-Yamamoto, T., M. Kawakami, and M. Sakuda, "Effect of a pulsing electromagnetic field on demineralized bone-matrix-induced bone formation in a bony defect in the premaxilla of rats," J. Dent. Res., Vol. 71, 1920-1925, 1992.
doi:10.1177/00220345920710121301

9. Hartig, M., U. Joos, and H. P. Wiesmann, "Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro," Eur. Biophys. J., Vol. 29, 499-506, 2000.
doi:10.1007/s002490000100

10. Landry, P. S., K. K. Sadasivan, A. A. Marino, and J. A. Albright, "Electromagnetic fields can affect osteogenesis by increasing the rate of differentiation," Clin. Orthop. Relat. Res., 262-270, 1997.
doi:10.1097/00003086-199705000-00035

11. Yamamoto, Y., Y. Ohsaki, T. Goto, A. Nakasima, and T. Iijima, "Effects of static magnetic fields on bone formation in rat osteoblast cultures ," J. Dent. Res., Vol. 82, 962-966, 2003.
doi:10.1177/154405910308201205

12. Aaron, R. K. and D. M. Ciombor, "Acceleration of experimental endochondral ossification by biophysical stimulation of the progenitor cell pool ," J. Orthop. Surg., Vol. 14, 582-589, 1996.

13. Aaron, R. K., D. M. Ciombor, and G. Jolly, "Stimulation of experimental endochondral ossification by low-energy pulsing electromagnetic fields," J. Bone Miner. Res., Vol. 4, 227-233, 1989.
doi:10.1002/jbmr.5650040215

14. McLeod, K. J. and L. Collazo, "Suppression of a differentiation response in MC-3T3-E1 osteoblast-like cells by sustained, low-level, 30 Hz magnetic-field exposure," Radiat. Res., Vol. 153, 706-714, 2000.
doi:10.1667/0033-7587(2000)153[0706:SOADRI]2.0.CO;2

15. Lohmann, C. H., Z. Schwartz, Y. Liu, H. Guerkov, D. D. Dean, B. Simon, and B. D. Boyan, "Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production," J. Orthop. Res., Vol. 18, 637-646, 2000.
doi:10.1002/jor.1100180417

16. Lohmann, C. H., Z. Schwartz, Y. Liu, Z. Li, B. J. Simon, V. L. Sylvia, D. D. Dean, L. F. Bonewald, H. J. Donahue, and B. D. Boyan, "Pulsed electromagnetic fields affect phenotype and connexin 43 protein expression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells," J. Orthop. Res., Vol. 21, 326-334, 2003.
doi:10.1016/S0736-0266(02)00137-7

17. Chang, W. H., L. T. Chen, J. S. Sun, and F. H. Lin, "Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities," Bioelectromagnetics, Vol. 25, 457-465, 2004.
doi:10.1002/bem.20016

18. Cohly, H. H., G. E. Abraham, K. Ndebele, J. J. Jenkins, J. Thompson, and M. F. Angel, "Effects of static electromagnetic fields on characteristics of MG-63 osteoblasts grown in culture," Biomed. Sci. Instrum., Vol. 39, 454-459, 2003.

19. Hannay, G., D. Leavesley, and M. Pearcy, "Timing of pulsed electromagnetic field stimulation does not affect the promotion of bone cell development," Bioelectromagnetics, Vol. 26, 670-676, 2005.
doi:10.1002/bem.20166

20. T., M. Alvarez-Folgueiras, J. Leiro, F. J. Jorge-Barreiro, F. J. Ares-Pena, Jorge-Mora and E. Lopez-Martin, "Exposure to 2.45 GHz microwave radiation provokes cerebral changes in induction of hsp-90 a/b heat shock protein in rat," Progress In Electromagnetics Research, Vol. 100, 351-379, 2010.
doi:10.2528/PIER09102804