1. Hu, Y. S., M. Li, G. P. Gao, J. S. Zhang, and M. K. Yang, "A double-printed trapezoidal patch dipole antenna for UWB applications with band-notched characteristic," Progress In Electromagnetics Research, Vol. 103, 259-269, 2010.
doi:10.2528/PIER10011604 Google Scholar
2. Chen, D. and C. H. Cheng, "A novel compact ultrawideband (UWB) wide slot antenna with via holes," Progress In Electromagnetics Research, Vol. 94, 353-349, 2009.
doi:10.2528/PIER09062306 Google Scholar
3. Lee, J. N., J. K. Park, and , "Compact UWB chip antenna design using the coupling concept," Progress In Electromagnetics Research, Vol. 90, 341-351, 2009.
doi:10.2528/PIER09011901 Google Scholar
4. Lin, S., S. Yang, A. E. Fathy, and A. Elsherbini, "Development of a novel UWB vivaldi antenna array using SIW technology," Progress In Electromagnetics Research, Vol. 90, 369-384, 2009.
doi:10.2528/PIER09020503 Google Scholar
5. Sim, C. Y. D., W. T. Chung, and C. H. Lee, "Planar UWB antenna with 5 GHz band rejection switching function at ground plane," Progress In Electromagnetics Research, Vol. 106, 321-333, 2010.
doi:10.2528/PIER10060208 Google Scholar
6. Barbarino, S., S. and F. Consoli, "UWB circular slot antenna provided with an inverted-l notch filter for the 5 GHz WLAN band," Progress In Electromagnetics Research, Vol. 104, 1-13, 2010.
doi:10.2528/PIER10040507 Google Scholar
7. Habib, M. A., A. Bostani, A. Djaiz, M. Nedil, M. C. E. Yagoub, and T. A. Denidni, "Ultra wideband CPW-FED aperture antenna with WLAN band rejection," Progress In Electromagnetics Research, Vol. 106, 17-31, 2010.
doi:10.2528/PIER10011905 Google Scholar
8. Chung, J. Y., "Ultra-wideband dielectric-loaded horn antenna with dual-linear polarization capability," Progress In Electromagnetics Research, Vol. 102, 397-411, 2010.
doi:10.2528/PIER10022703 Google Scholar
9. Ren, L. S., F. Li, J. J. Zhao, G. Zhao, and Y. C. Jiao, "A novel compact uwb antenna with dual band-notched characteristics ," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11--12, 1521-1529, 2010.
doi:10.1163/156939310792149678 Google Scholar
10. Xiao, J. X. and M. F. Wang, "A novel uwb circinal slot antenna with band-stop characteristics," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1125-1133, 2010.
doi:10.1163/156939310791586052 Google Scholar
11. Ojaroudi, M., "Printed monopole antenna with a novel band-notched folded trapezoid for ultra-wideband applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17--18, 2513-2522, 2009. Google Scholar
12. Chen, Z. N., X. H. Wu, H. F. Li, N. Yang, and M. Y. W. Chia, "Considerations for source pulses and antennas in UWB radio systems," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 7, 1739-1748, July 2004.
doi:10.1109/TAP.2004.831405 Google Scholar
13. Kwon, D. H., "Effect of antenna gain and group delay variations on pulse-preserving capabilities of ultrawideband antennas," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 8, 2208-2215, Aug. 2006.
doi:10.1109/TAP.2006.879189 Google Scholar
14. Zwierzchowski, S. and P. Jazayeri, "A systems and network analysis approach to antenna design for UWB communications," IEEE Antennas and Propagation Society International Symposium, Vol. 1, 826-829, 2003. Google Scholar
15. Qin, X. M., Z. N. Chen, and M. Y. Chia, "Network approach to UWB antenna transfer functions characterization," The European Conference on Wireless Technology, 293-296, 2005. Google Scholar
16. Duroc, Y., "On the system modeling of antennas," Progress In Electromagnetics Research B, Vol. 21, 69-85, 2010. Google Scholar
17. Zhang, Z. and Y. H. Lee, "A modified model-based interpolation method to accelerate the characterization of UWB antenna system," IEEE Transactions on Antennas and Propagation, Vol. 55, 475-479, 2007.
doi:10.1109/TAP.2006.889948 Google Scholar
18. Rego, C. G. C., J. S. Nunes, and M. N. de Abreu Bueno, "Unified characterization of UWB antennas in time and frequency domains: An approach based on the singularity expansion method," IMOC, 827-831, 2007. Google Scholar
19. Duroc, Y., , Duroc, Y., R. Khouri, V. T. Beroulle, P. Vuong, and S. Tedjini, "Considerations on the characterization and the modelization of ultra-wideband antennas," ICUWB, 491-496, 2007. Google Scholar
20. Licul, S. and W. A. Davis, "Unified frequency and time-domain antenna modeling and characterization," IEEE Transactions on Antennas and Propagation, Vol. 53, 2882-2888, 2005.
doi:10.1109/TAP.2005.854533 Google Scholar
21. Li, J. Y., "A bi-swarm optimizing strategy and its application of antenna design," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14--15, 1877-1886, 2009.
doi:10.1163/156939309789932449 Google Scholar
22. Lim, S. and H. Ling, "Comparing electrically small folded conical and spherical helix antennas based on a genetic algorithm optimization," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11--12, 1586-1593, 2009. Google Scholar
23. Li, J. Y. and J. L. Guo, "Optimization technique using differential evolution for yagi-uda antennas," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 449-461, 2009.
doi:10.1163/156939309787612356 Google Scholar
24. Lanza Diego, M., J. R. Perez Lopez, and J. Basterrechea, "Synthesis of planar arrays using a modified particle swarm optimization algorithm by introducing a selection operator and elitism," Progress In Electromagnetics Research, Vol. 93, 145-160, 2009.
doi:10.2528/PIER09041303 Google Scholar
25. Dib, N. I., S. K. Goudos, and H. Muhsen, "Application of Taguchi's optimization method and self-adaptive differential evolution to the synthesis of linear antenna arrays," Progress In Electromagnetics Research, Vol. 102, 159-180, 2010.
doi:10.2528/PIER09122306 Google Scholar
26. Zhang, Z. and Y. H. Lee, "An automatic model order reduction of a UWB antenna system," Progress In Electromagnetics Research, Vol. 104, 267-282, 2010. Google Scholar
27. Lee, Y. H., B. J. Cahill, S. J. Porter, and A. C. Marvin, "A novel evolutionary learning technique for multi-objective array antenna optimization," Progress In Electromagnetics Research, Vol. 48, 125-144, 2004.
doi:10.2528/PIER04012202 Google Scholar
28. Chamaani, S., S. A. Mirtaheri, M. Teshnehlab, M. A. Shooredeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.
doi:10.2528/PIER07101702 Google Scholar
29. Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, Vol. 6, 182-197, 2002.
doi:10.1109/4235.996017 Google Scholar
30. Zitzler, E. and L. Thiele, "Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach," IEEE Transactions on Evolutionary Computation, Vol. 3, No. 4, 257-271, Nov. 1999.
doi:10.1109/4235.797969 Google Scholar
31. Knowles, J. D. and D. W. Corne, "Approximating the nondominated front using the Pareto archive evolutionary strategy," Evolutionary Computation, Vol. 8, 149-172, 2000.
doi:10.1162/106365600568167 Google Scholar
32. Coello, C. A. C. and M. S. Lechuga, "MOPSO: A proposal for multiple objective particle swarm optimization," Proceedings of the 2002 Congress on Evolutionary Computation, May 2002. Google Scholar
33. Bui, L. T. and S. Alam, Multi-Objective Optimization in Computational Intelligence: Theory and Practice, IGI Global, May 2008.
34. Kannan, S., S. Baskar, J. D. McCalley, and P. Murugan, "Application of NSGA-II algorithm to generation expansion planning," IEEE Transactions on Power Systems, Vol. 24, No. 1, 454-461, Feb. 2009.
doi:10.1109/TPWRS.2008.2004737 Google Scholar
35. Sharma, N., A. Rao, A. Dewan, and M. Safdari, "Rate adaptive resource allocation for multiuser OFDM using NSGA-II," Fourth International Conference on Wireless Communication and Sensor Networks, 2008. WCSN 2008, 161-166, Dec. 2008.
doi:10.1109/WCSN.2008.4772703 Google Scholar
36. Chakraborty, J., A. Konar, A. Nagar, and S. Das, "Rotation and translation selective Pareto optimal solution to the box-pushing problem by mobile robots using NSGA-II," IEEE Congress on Evolutionary Computation, 2009. CEC '09, 2120-2126, May 18--21, 2009. Google Scholar
37. Xing, Z. Y., Y. Zhang, Y. L. Hou, and G. Q. Cai, "Multi-objective fuzzy modeling using NSGA-II," 2008 IEEE Conference on Cybernetics and Intelligent Systems, 119-124, Sep. 21--24, 2008. Google Scholar
38. Goudos, S. K., K. Siakavara, E. Vafiadis, and J. N. Sahalos, "Pareto optimal yagi-uda antenna design using multi-objective differential evolution," Progress In Electromagnetics Research, Vol. 105, 231-251, 2010.
doi:10.2528/PIER10052302 Google Scholar
39. Wu, X. H. and Z. N. Chen, "Design and optimization of UWB antennas by a powerful CAD tool: PULSE KIT," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 1756-1759, June 20--25, 2004. Google Scholar
40. Tisseur, F. and K. Meerbergen, "The quadratic eigenvalue problem," SIAM Review, Vol. 43, 235-286, 2001.
doi:10.1137/S0036144500381988 Google Scholar
41. Persson, P. O. and G. Strang, "A simple mesh generator in MATLAB," SIAM Review, Vol. 46, 329-345, 2004.
doi:10.1137/S0036144503429121 Google Scholar
42. Qin, X. M. and Z. N. Chen, "Transfer functions measurement for UWB antenna," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 2532-2535, 2004. Google Scholar