Vol. 112
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-01-25
A Robust Cad Tool for Integrated Design of UWB Antenna System
By
Progress In Electromagnetics Research, Vol. 112, 441-457, 2011
Abstract
This paper proposes a robust Computer-Aided Design (CAD) tool for an Ultra-Wideband (UWB) antenna system which successfully integrates the design of the transmitting antenna, the receiving antenna and the shaping of the transmitted pulse. The distinctive features of this tool include: the efficient characterization of transfer function in terms of an analytical model, the effective evaluation from system point of view and the simultaneous optimization of multiple objectives. Using this tool, an automatic and efficient design can be realized to deliver the UWB antenna system upon the optimal performance.
Citation
Zhan Zhang, and Yee Hui Lee, "A Robust Cad Tool for Integrated Design of UWB Antenna System," Progress In Electromagnetics Research, Vol. 112, 441-457, 2011.
doi:10.2528/PIER10110502
References

1. Hu, Y. S., M. Li, G. P. Gao, J. S. Zhang, and M. K. Yang, "A double-printed trapezoidal patch dipole antenna for UWB applications with band-notched characteristic," Progress In Electromagnetics Research, Vol. 103, 259-269, 2010.
doi:10.2528/PIER10011604        Google Scholar

2. Chen, D. and C. H. Cheng, "A novel compact ultrawideband (UWB) wide slot antenna with via holes," Progress In Electromagnetics Research, Vol. 94, 353-349, 2009.
doi:10.2528/PIER09062306        Google Scholar

3. Lee, J. N., J. K. Park, and , "Compact UWB chip antenna design using the coupling concept," Progress In Electromagnetics Research, Vol. 90, 341-351, 2009.
doi:10.2528/PIER09011901        Google Scholar

4. Lin, S., S. Yang, A. E. Fathy, and A. Elsherbini, "Development of a novel UWB vivaldi antenna array using SIW technology," Progress In Electromagnetics Research, Vol. 90, 369-384, 2009.
doi:10.2528/PIER09020503        Google Scholar

5. Sim, C. Y. D., W. T. Chung, and C. H. Lee, "Planar UWB antenna with 5 GHz band rejection switching function at ground plane," Progress In Electromagnetics Research, Vol. 106, 321-333, 2010.
doi:10.2528/PIER10060208        Google Scholar

6. Barbarino, S., S. and F. Consoli, "UWB circular slot antenna provided with an inverted-l notch filter for the 5 GHz WLAN band," Progress In Electromagnetics Research, Vol. 104, 1-13, 2010.
doi:10.2528/PIER10040507        Google Scholar

7. Habib, M. A., A. Bostani, A. Djaiz, M. Nedil, M. C. E. Yagoub, and T. A. Denidni, "Ultra wideband CPW-FED aperture antenna with WLAN band rejection," Progress In Electromagnetics Research, Vol. 106, 17-31, 2010.
doi:10.2528/PIER10011905        Google Scholar

8. Chung, J. Y., "Ultra-wideband dielectric-loaded horn antenna with dual-linear polarization capability," Progress In Electromagnetics Research, Vol. 102, 397-411, 2010.
doi:10.2528/PIER10022703        Google Scholar

9. Ren, L. S., F. Li, J. J. Zhao, G. Zhao, and Y. C. Jiao, "A novel compact uwb antenna with dual band-notched characteristics ," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11--12, 1521-1529, 2010.
doi:10.1163/156939310792149678        Google Scholar

10. Xiao, J. X. and M. F. Wang, "A novel uwb circinal slot antenna with band-stop characteristics," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1125-1133, 2010.
doi:10.1163/156939310791586052        Google Scholar

11. Ojaroudi, M., "Printed monopole antenna with a novel band-notched folded trapezoid for ultra-wideband applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17--18, 2513-2522, 2009.        Google Scholar

12. Chen, Z. N., X. H. Wu, H. F. Li, N. Yang, and M. Y. W. Chia, "Considerations for source pulses and antennas in UWB radio systems," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 7, 1739-1748, July 2004.
doi:10.1109/TAP.2004.831405        Google Scholar

13. Kwon, D. H., "Effect of antenna gain and group delay variations on pulse-preserving capabilities of ultrawideband antennas," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 8, 2208-2215, Aug. 2006.
doi:10.1109/TAP.2006.879189        Google Scholar

14. Zwierzchowski, S. and P. Jazayeri, "A systems and network analysis approach to antenna design for UWB communications," IEEE Antennas and Propagation Society International Symposium, Vol. 1, 826-829, 2003.        Google Scholar

15. Qin, X. M., Z. N. Chen, and M. Y. Chia, "Network approach to UWB antenna transfer functions characterization," The European Conference on Wireless Technology, 293-296, 2005.        Google Scholar

16. Duroc, Y., "On the system modeling of antennas," Progress In Electromagnetics Research B, Vol. 21, 69-85, 2010.        Google Scholar

17. Zhang, Z. and Y. H. Lee, "A modified model-based interpolation method to accelerate the characterization of UWB antenna system," IEEE Transactions on Antennas and Propagation, Vol. 55, 475-479, 2007.
doi:10.1109/TAP.2006.889948        Google Scholar

18. Rego, C. G. C., J. S. Nunes, and M. N. de Abreu Bueno, "Unified characterization of UWB antennas in time and frequency domains: An approach based on the singularity expansion method," IMOC, 827-831, 2007.        Google Scholar

19. Duroc, Y., , Duroc, Y., R. Khouri, V. T. Beroulle, P. Vuong, and S. Tedjini, "Considerations on the characterization and the modelization of ultra-wideband antennas," ICUWB, 491-496, 2007.        Google Scholar

20. Licul, S. and W. A. Davis, "Unified frequency and time-domain antenna modeling and characterization," IEEE Transactions on Antennas and Propagation, Vol. 53, 2882-2888, 2005.
doi:10.1109/TAP.2005.854533        Google Scholar

21. Li, J. Y., "A bi-swarm optimizing strategy and its application of antenna design," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14--15, 1877-1886, 2009.
doi:10.1163/156939309789932449        Google Scholar

22. Lim, S. and H. Ling, "Comparing electrically small folded conical and spherical helix antennas based on a genetic algorithm optimization," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11--12, 1586-1593, 2009.        Google Scholar

23. Li, J. Y. and J. L. Guo, "Optimization technique using differential evolution for yagi-uda antennas," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 449-461, 2009.
doi:10.1163/156939309787612356        Google Scholar

24. Lanza Diego, M., J. R. Perez Lopez, and J. Basterrechea, "Synthesis of planar arrays using a modified particle swarm optimization algorithm by introducing a selection operator and elitism," Progress In Electromagnetics Research, Vol. 93, 145-160, 2009.
doi:10.2528/PIER09041303        Google Scholar

25. Dib, N. I., S. K. Goudos, and H. Muhsen, "Application of Taguchi's optimization method and self-adaptive differential evolution to the synthesis of linear antenna arrays," Progress In Electromagnetics Research, Vol. 102, 159-180, 2010.
doi:10.2528/PIER09122306        Google Scholar

26. Zhang, Z. and Y. H. Lee, "An automatic model order reduction of a UWB antenna system," Progress In Electromagnetics Research, Vol. 104, 267-282, 2010.        Google Scholar

27. Lee, Y. H., B. J. Cahill, S. J. Porter, and A. C. Marvin, "A novel evolutionary learning technique for multi-objective array antenna optimization," Progress In Electromagnetics Research, Vol. 48, 125-144, 2004.
doi:10.2528/PIER04012202        Google Scholar

28. Chamaani, S., S. A. Mirtaheri, M. Teshnehlab, M. A. Shooredeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.
doi:10.2528/PIER07101702        Google Scholar

29. Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, Vol. 6, 182-197, 2002.
doi:10.1109/4235.996017        Google Scholar

30. Zitzler, E. and L. Thiele, "Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach," IEEE Transactions on Evolutionary Computation, Vol. 3, No. 4, 257-271, Nov. 1999.
doi:10.1109/4235.797969        Google Scholar

31. Knowles, J. D. and D. W. Corne, "Approximating the nondominated front using the Pareto archive evolutionary strategy," Evolutionary Computation, Vol. 8, 149-172, 2000.
doi:10.1162/106365600568167        Google Scholar

32. Coello, C. A. C. and M. S. Lechuga, "MOPSO: A proposal for multiple objective particle swarm optimization," Proceedings of the 2002 Congress on Evolutionary Computation, May 2002.        Google Scholar

33. Bui, L. T. and S. Alam, Multi-Objective Optimization in Computational Intelligence: Theory and Practice, IGI Global, May 2008.

34. Kannan, S., S. Baskar, J. D. McCalley, and P. Murugan, "Application of NSGA-II algorithm to generation expansion planning," IEEE Transactions on Power Systems, Vol. 24, No. 1, 454-461, Feb. 2009.
doi:10.1109/TPWRS.2008.2004737        Google Scholar

35. Sharma, N., A. Rao, A. Dewan, and M. Safdari, "Rate adaptive resource allocation for multiuser OFDM using NSGA-II," Fourth International Conference on Wireless Communication and Sensor Networks, 2008. WCSN 2008, 161-166, Dec. 2008.
doi:10.1109/WCSN.2008.4772703        Google Scholar

36. Chakraborty, J., A. Konar, A. Nagar, and S. Das, "Rotation and translation selective Pareto optimal solution to the box-pushing problem by mobile robots using NSGA-II," IEEE Congress on Evolutionary Computation, 2009. CEC '09, 2120-2126, May 18--21, 2009.        Google Scholar

37. Xing, Z. Y., Y. Zhang, Y. L. Hou, and G. Q. Cai, "Multi-objective fuzzy modeling using NSGA-II," 2008 IEEE Conference on Cybernetics and Intelligent Systems, 119-124, Sep. 21--24, 2008.        Google Scholar

38. Goudos, S. K., K. Siakavara, E. Vafiadis, and J. N. Sahalos, "Pareto optimal yagi-uda antenna design using multi-objective differential evolution," Progress In Electromagnetics Research, Vol. 105, 231-251, 2010.
doi:10.2528/PIER10052302        Google Scholar

39. Wu, X. H. and Z. N. Chen, "Design and optimization of UWB antennas by a powerful CAD tool: PULSE KIT," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 1756-1759, June 20--25, 2004.        Google Scholar

40. Tisseur, F. and K. Meerbergen, "The quadratic eigenvalue problem," SIAM Review, Vol. 43, 235-286, 2001.
doi:10.1137/S0036144500381988        Google Scholar

41. Persson, P. O. and G. Strang, "A simple mesh generator in MATLAB," SIAM Review, Vol. 46, 329-345, 2004.
doi:10.1137/S0036144503429121        Google Scholar

42. Qin, X. M. and Z. N. Chen, "Transfer functions measurement for UWB antenna," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 2532-2535, 2004.        Google Scholar