1. Nakahori, K., T. Egawa, and H. Mitani, "Characteristics of winter lightning in Hokuriku district," IEEE Transactions on Power Apparatus and System, Vol. 101, No. 11, 4407-4412, Nov. 1982.
doi:10.1109/TPAS.1982.317407 Google Scholar
2. Miyake, K., T. Suzuki, M. Takashima, M. Takuma, and T. Tada, "Winter lightning on Japan Sea coast-lightning striking frequency to tall structures," Power Delivery, Vol. 5, No. 3, 1370-1377, Jul. 1990.
doi:10.1109/61.57979 Google Scholar
3. Yokoyama, S., K. Miyake, T. Suzuki, and S. Kanao, "Winter lightning on Japan Sea coast --- development of measuring system on progressing feature of lightning discharge," Power Delivery, Vol. 5, No. 3, 1418-1425, Jul. 1990.
doi:10.1109/61.57984 Google Scholar
4. Miyake, K., T. Suzuki, and K. Shinjou, "Characteristics of winter lightning on Japan Sea coast," Power Delivery, Vol. 7, No. 3, 1450-1457, Jul. 1992.
doi:10.1109/61.141864 Google Scholar
5. Asakawa, A., K. Miyake, S. Yokoyama, T. Shindo, T. Yokota, and T. Sakai, "Two types of lightning discharges to a high stack on the coast of the sea of Japan in winter," Power Delivery, Vol. 12, No. 3, 1222-1231, Jul. 1997.
doi:10.1109/61.636953 Google Scholar
6. Lim, E. and T.-Y. Lee, "Statistical characteristics of lightning over the Korean Peninsula for 1996-2000," Asia-Pacific J. Atmos. Sci., Vol. 41, 41-55, 2005. Google Scholar
7. Kar, S. K., Y.-A. Liou, and K.-J. Ha, "Characteristics of cloud-to-ground lightning activity over Seoul, South Korea in relation to an urban effect," Ann. Geophys., Vol. 25, 2113-2118, 2007.
doi:10.5194/angeo-25-2113-2007 Google Scholar
8. Kuk, B. J., J. S. Ha, H. I. Kima, and H. K. Leea, "Statistical characteristics of ground lightning flashes over the Korean peninsula using cloud-to-ground lightning data from 2004-2008," Atmospheric Research, Vol. 95, No. 2-3, 123-135, 2010.
doi:10.1016/j.atmosres.2009.08.014 Google Scholar
9. Gomes, C., "On the nature of lightning flashes: With special attention to the initiation, modelling and remote sensing of return strokes,", Ph.D. Thesis, University of Colombo/Uppsala University, 1999. Google Scholar
10. Sabaa, M. M. F., O. Pinto, Jr., N. N. Solorzano, and A. Eybert-Berard, "Lightning current observation of an altitude-triggered flash," Atmospheric Research, Vol. 76, 402-411, 2005.
doi:10.1016/j.atmosres.2004.11.005 Google Scholar
11. Zhang, Q., X. Qie, Z. Wang, T. Zhang, Y. Zhao, J. Yang, and X. Kong, "Characteristics and simulation of lightning current waveforms during one artificially triggered lightning," Atmospheric Research, Vol. 91, 387-392, 2009.
doi:10.1016/j.atmosres.2008.04.015 Google Scholar
12. Berger, K., R. B. Anderson, and H. Kröninger, "Parameters of lightning flashes," CIGRE Electra, Vol. 41, 23-37, 1975. Google Scholar
13. Anderson, R. B. and A. J. Eriksson, "Lightning parameters for engineering application," CIGRE Electra, Vol. 69, 65-102, 1980. Google Scholar
14. Gomes, C. and V. Cooray, "Electromagnetic transients in radio/microwave bands and surge protection devices," Progress In Electromagnetics Research, Vol. 108, 101-130, 2010.
doi:10.2528/PIER10070304 Google Scholar
15. Uman, M. A., D. K. McLain, and E. P. Krider, "The electromagnetic radiation from a finite antenna," Am. J. Phys., Vol. 43, 33-38, 1975.
doi:10.1119/1.10027 Google Scholar
16. Kannu, P. D. and M. J. Thomas, "Influence of lightning electric field components on the induced voltages on a power distribution line," Electric Power Systems Research, Vol. 64, No. 3, 247-255, 2003.
doi:10.1016/S0378-7796(02)00191-8 Google Scholar
17. Nucci, C. A., F. Rachidi, M. Ianoz, and C. Mazzetti, "Lightning-induced voltages on overhead lines," IEEE Trans. Electromag. Compat., Vol. 35, No. 1, 75-85, 1993.
doi:10.1109/15.249398 Google Scholar
18. Fernando, M. and V. Cooray, "Propagation effects on the electric field time derivatives generated by return strokes in lightning flashes," Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 69, No. 12, 1388-1396, 2007.
doi:10.1016/j.jastp.2007.03.013 Google Scholar
19. Cooray, V., M. Fernando, T. Sörensen, T. Götschl, and A. Pedersen, "Propagation of lightning generated transient electromagnetic fields over finitely conducting ground," J. Atmos. Terres. Phy., Vol. 62, 583-600, 2000.
doi:10.1016/S1364-6826(00)00008-0 Google Scholar
20. Gardner, R. L., "Effects of propagation on lightning induced transient fields," Radio Sci., Vol. 16, 337-384, 1981. Google Scholar
21. Cooray, V. and S. Lundquist, "Effects of propagation on the risetime and the initial peaks of radiation fields from return strokes," Radio Sci., Vol. 18, 409-415, 1983.
doi:10.1029/RS018i003p00409 Google Scholar
22. Le Vine, D. M., L. Gesell, and M. Kao, "Radiation from lightning return strokes over a finitely conducting earth," J. Geophys. Res., Vol. 91, 11897-11908, 1986.
doi:10.1029/JD091iD11p11897 Google Scholar
23. Cooray, V., "Effects of propagation on the return stroke radiation fields," Radio Sci., Vol. 22, 757-768, 1987.
doi:10.1029/RS022i005p00757 Google Scholar
24. Ming, Y. and V. Cooray, "Propagation effects caused by a rough ocean surface on the electromagnetic fields generated by lightning return strokes," Radio Sci., Vol. 29, 73-85, 1994.
doi:10.1029/93RS02085 Google Scholar
25. Cooray, V. and Y. Ming, "Propagation effects on the lightning generated electromagnetic fields for homogeneous and mixed sea land paths," J. Geophys. Res., Vol. 99, 10641-10652, 1994.
doi:10.1029/93JD03277 Google Scholar
26. Cooray, V., "Propagation effects on radiation field pulses generated by cloud lightning flashes," Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 69, 1397-1406, 2007.
doi:10.1016/j.jastp.2007.03.009 Google Scholar
27. Cooray, V., "Propagation effects due to finitely conducting ground on lightning generated magnetic fields evaluated using Sommer-feld's integrals," IX International Symposium on Lightning Protection, Foz do Iguaçu, Brazil, Nov. 2007. Google Scholar
28. Rachidi, F., C. A. Nucci, M. Ianoz, and C. Mazzetti, "Influence of lossy ground on lightning induced voltages on overhead lines," IEEE Trans. Electromag. Compat., Vol. 38, No. 3, 250-264, 1996.
doi:10.1109/15.536054 Google Scholar
29. Rachidi, F., C. A. Nucci, and M. Ianoz, "Transient analysis of multiconductor lines above a lossy ground," IEEE Trans. Power Deliv., Vol. 14, No. 1, 294-302, 1999.
doi:10.1109/61.736741 Google Scholar
30. Nucci, C. A., "Lightning induced voltages on distribution systems: Inflence of ground resistivity and system topology," Journal of Lightning Research, Vol. 1, 148-157, 2007. Google Scholar
31. IEC 60092-501 Edition 4.0 2007-08 "Electrical installations in ships: Special features --- electric propulsion plant,", 2007. Google Scholar
32. IEC 60092-351 Edition 3.0 2004-04 "Electrical installations in ships: Insulating materials for shipboard and offshore units, power, control, instrumentation, telecommunication and data cables,", 2004. Google Scholar
33. IEC 60092-504 Edition 3.0 2001-03 "Electrical installations in ships: Special features --- control and instrumentation,", 2001. Google Scholar
34. IEC 60945:2002 (revised in 2008) "Maritime navigation and radio-communication equipment and systems: General requirements --- methods of testing and required test results,", 2002. Google Scholar
35. IEC 60092-401 "Electrical installations in ships --- Part 401: Installation and test of completed installation 1980,", Amendment 2, 1997. Google Scholar
36. IEC 60092-202 "Electrical installations in ships --- Part 202: System design --- protection,", 1994. Google Scholar
37. IEC 60092-301 "Electrical installations in ships --- Part 301: Equipment --- generators and motors,", 1980. Google Scholar
38. IEC 60092-303 "Electrical installations in ships --- Part 303: Equipment --- transformers for power and lighting,", 1980. Google Scholar
39. IEC 60092-351 "Electrical installations in ships --- Part 351: Insulating materials for shipboard and offshore units, power, control, instrumentation, telecommunication and data cables,", 2004. Google Scholar
40. IEC 60092-352 "Electrical installations in ships --- Part 352: Choice and installation of electrical cables,", 2005. Google Scholar
41. IEC 60092-376 "Electrical installations in ships --- Part 376: Cables for control and instrumentation circuits 150/250V (300 V),", 2003. Google Scholar
42. IEC 60092-354 "Electrical installations in ships --- Part 354: Single- and three-core power cables with extruded solid insulation for rated voltages 6 kV (Um = 7,2 kV) up to 30 kV (Um = 36 kV),", 2003. Google Scholar
43. IEC 60092-503 "Electrical installations in ships --- Part 503: Special features --- AC supply systems with voltages in the range of above 1 kV up to and including 15 kV,", 2007. Google Scholar
44. IEC 62305 1-4, Ed-01 "Protection against lightning,", 2006. Google Scholar
45. MIL-STD-1310G "Department of defense: Standard practice for shipboard bonding, grounding, and other techniques for electromagnetic compatibility and safety,", 1996. Google Scholar
46. MIL-STD-464A "Department of defense: Interface standard, electromagnetic environmental effects requirements for systems,", 1997. Google Scholar
47. Military Handbook 419A, Department of Defense: Volumes I & II, Grounding, Bonding and Shielding, 1987.
48. IEEE C62.41-1991 "IEEE recommended practice for surge voltages in low-voltage AC power circuits,", 1999. Google Scholar
49. Meredith, S. L., S. K. Earles, I. Kostanic, N. Turner, and C. E. Otero, "How lightning tortuosity affects the electromagnetic fields by augmenting their effective distance," Progress In Electromagnetics Research B, Vol. 25, 155-169, 2010.
doi:10.2528/PIERB10072808 Google Scholar
50. Izadi, M., M. Z. A. Ab Kadir, C. Gomes, and W. F. W. Ahmad, "An analytical second-FDTD method for evaluation of electric and magnetic fields at intermediate distances from lightning channel," Progress In Electromagnetics Research, Vol. 110, 329-352, 2010.
doi:10.2528/PIER10080801 Google Scholar
51. Song, T.-X., Y.-H. Liu, and J.-M. Xiong, "Computations of electromagnetic fields radiated from complex lightning channels," Progress In Electromagnetics Research, Vol. 73, 93-105, 2007.
doi:10.2528/PIER07032501 Google Scholar
52. Dumin, O. M., O. O. Dumina, and V. A. Katrich, "Evolution of transient electromagnetic fields in radially inhomogeneous nonstationary medium," Progress In Electromagnetics Research, Vol. 103, 403-418, 2010.
doi:10.2528/PIER10011909 Google Scholar
53. Ergül, O. and L. Gürel, "Improving iterative solutions of the electric-field integral equation via transformations into normal equations," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2129-2138, 2010.
doi:10.1163/156939310793699082 Google Scholar
54. Wang, J., W.-Y. Yin, J.-P. Fang, and Q.-F. Liu, "Transient responses of coaxial cables in an electrically large cabin with slots and windows illuminated by an electromagnetic pulse," Progress In Electromagnetics Research, Vol. 106, 1-16, 2010.
doi:10.2528/PIER10060708 Google Scholar
55. Xie, H., J. Wang, R. Fan, and Y. Liu, "Study of loss effect of transmission lines and validity of a spice model in electromagnetic topology," Progress In Electromagnetics Research, Vol. 90, 89-103, 2009.
doi:10.2528/PIER08121605 Google Scholar
56. Xie, H., J. Wang, R. Fan, and Y. Liu, "Spice models for radiated and conducted susceptibility analyses of multiconductor shielded cables," Progress In Electromagnetics Research, Vol. 103, 241-257, 2010.
doi:10.2528/PIER10020506 Google Scholar
57. Bojovschi, A., W. S. T. Rowe, and K. L. Wong, "Electromagnetic field intensity generated by partial discharge in high voltage insulating materials," Progress In Electromagnetics Research, Vol. 104, 167-182, 2010.
doi:10.2528/PIER10010803 Google Scholar