Vol. 112
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-01-13
On Openmp Parallelization of the Multilevel Fast Multipole Algorithm
By
Progress In Electromagnetics Research, Vol. 112, 199-213, 2011
Abstract
Compared with MPI, OpenMP provides us an easy way to parallelize the multilevel fast multipole algorithm (MLFMA) on shared-memory systems. However, the implementation of OpenMP parallelization has many pitfalls because different parts of the MLFMA have distinct numerical characteristics due to its complicated algorithm structure. These pitfalls often cause very low efficiency, especially when many threads are employed. Through an in-depth investigation on these pitfalls with analysis and numerical experiments, we propose an efficient OpenMP parallel MLFMA. Three strategies are proposed in the parallelization, including: 1) the choice of OpenMP schedule manners; 2) loop reorganization for far-field interaction in the MLFMA; 3) determination of a transition level. Numerical experiments on large scale targets show the proposed OpenMP parallel scheme can perform as efficiently as the MPI counterpart, and much more efficiently than the straightforward OpenMP parallel one.
Citation
Xiao-Min Pan, Wei-Chao Pi, and Xin-Qing Sheng, "On Openmp Parallelization of the Multilevel Fast Multipole Algorithm," Progress In Electromagnetics Research, Vol. 112, 199-213, 2011.
doi:10.2528/PIER10120802
References

1. Song, J. M., C. C. Lu, and W. C. Chew, "MLFMA for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, 1488-1493, Oct. 1997.
doi:10.1109/8.633855

2. Ayestaran, R. G., J. Laviada-Martinez, and F. Las-Heras, "Realistic antenna array synthesis in complex environments using a Mom-SVR approach," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 97-108, 2009.
doi:10.1163/156939309787604670

3. Lai, B., N. Wang, H. B. Yuan, and C. H. Liang, "Hybrid method of higher-order MoM and nyström disretization PO for 3D PECproblems," Progress In Electromagnetics Research, Vol. 109, 381-398, 2010.
doi:10.2528/PIER10081401

4. Hou, Z. G., C. Wang, and H. C. Yin, "Multilevel thresholding method for a sparse representation of reduced matrix in CBFM," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2605-2614, 2010.
doi:10.1163/156939310793675673

5. Ling, J., S. X. Gong, S. T. Qin, W. T. Wang, and Y. J. Zhang, "Wide-band analysis of on-platform antenna using MoM-PO combined with maehly approximation," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 475-484, 2010.

6. Ergul, O. and L. Gurel, "Improving iterative solutions of the electric-field integral equation via transformations into normal equations," Journal of Electromagnetic Waves and Applications, Vol. 24, 2129-2138, 2010.
doi:10.1163/156939310793699082

7. Ping, X. W., T. J. Cui, and W. B. Lu, "The combination of bcgstab with multifrontal algorithm to solve febi-mlfma linear systems arising from inhomogeneous electromagnetic scattering problems," Progress In Electromagnetics Research, Vol. 93, 91-105, 2009.
doi:10.2528/PIER09050604

8. Peng, Z., X. Q. Sheng, and F. Yin, "An efficient twofold iterative algorithm of Fe-Bi-MLFMA using multilevel inverse-based ilu preconditioning," Progress In Electromagnetics Research, Vol. 93, 369-384, 2009.
doi:10.2528/PIER09060305

9. Eibert, T. F., Ismatullah, E. Kaliyaperumal, and C. H. Schmidt, "Inverse equivalent surface current method with hierarchical higher order basis functions, full probe correction and multilevel fast multipole acceleration," Progress In Electromagnetics Research, Vol. 106, 377-394, 2010.
doi:10.2528/PIER10061604

10. Wu, G., X. Zhang, and B. Liu, "A hybrid method for predicting the shielding effectiveness of rectangular metallic enclosures with thickness apertures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1157-1169, 2010.
doi:10.1163/156939310791585972

11. Cui, Z., Y. Han, Q. Xu, and M. Li, "Parallel MoM solution of jmcfie for scattering by 3-d electrically large dielectric objects," Progress In Electromagnetics Research M, Vol. 12, 217-228, 2010.
doi:10.2528/PIERM10042607

12. Donepudi, K. C., J. M. Jin, S. Velamparambil, J. M. Song, and W. C. Chew, "A higher order parallelized multilevel fast multipole algorithm for 3-D scattering," IEEE Trans. Antennas Propag., Vol. 49, 1069-1078, Jul. 2001.

13. Velamparambil, S., W. C. Chew, and J. M. Song, "10 million unknowns: Is it that big?," IEEE Antennas Propagat. Mag., Vol. 45, 43-58, Apr. 2003.
doi:10.1109/MAP.2003.1203119

14. Velamparambil, S. and W. C. Chew, "Analysis and performance of a distributed memory multilevel fast multipole algorithm," IEEE Trans. Antennas Propagat., Vol. 53, 2719-2727, Aug. 2005.
doi:10.1109/TAP.2005.851859

15. Pan, X. M. and X. Q. Sheng, "A highly efiicient parallel approach of multi-level fast multipole algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1081-1092, 2006.
doi:10.1163/156939306776930321

16. Pan, X. M. and X. Q. Sheng, "A sophisticated parallel MLFMA for scattering by extremely large targets," IEEE Antennas Propag. Mag., Vol. 50, No. 3, 129-138, Jun. 2008.
doi:10.1109/MAP.2008.4563583

17. Ergül, Ö. and L. Gürel, "Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems," IEEE Trans. Antennas Propagat., Vol. 56, 2335-2345, Aug. 2008.
doi:10.1109/TAP.2008.926757

18. Ergül, Ö. and L. Gürel, "A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1740-1750, Jun. 2009.
doi:10.1109/TAP.2009.2019913

19. Li, W. D., W. Hong, and H.-X. Zhou, "An IE-ODDM-MLFMA scheme with DILU preconditioner for analysis of electromagnetic scattering from large complex objects," IEEE Trans. Antennas Propag., Vol. 56, 1368-1380, May 2008.
doi:10.1109/TAP.2008.922608

20. Yang, M. L. and X. Q. Sheng, "Parallel high-order Fe-Bi-MLFMA for scattering by large and deep coated cavities loaded with obstacles," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1813-1823, 2009.
doi:10.1163/156939309789566932

21. Taboada, J. M., M. G. Araujo, F. Obelleiro, J. M. Bertolo, L. Landesa, J. Rivero, and J. L. Rodriguez, "Supercomputer aware approach for the solution of challenging electromagnetic problems," Progress In Electromagnetics Research, Vol. 101, 241-256, 2010.

22. Buchau, A., S. M. Tsafak, W. Hafla, and W. M. Rucker, "Parallelization of a fast multipole boundary element method with cluster OpenMP," IEEE Trans. Magn., Vol. 44, 1338-1341, Jun. 2008.
doi:10.1109/TMAG.2007.916262

23. Zhang, H. W., X. W. Zhao, Y. Zhang, D. G. Donoro, W. X. Zhao, and C. H. Liang, "Analysis of a large scale narrow-wall slotted waveguide array by parallel MoM out-of-core solver using the higher order basis functions," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14--15, 1953-1965, 2010.

24. Gao, P. C., Y.-B. Tao, and H. Lin, "Fast RCS prediction using multiresolution shooting and bouncing ray method on the GPU," Progress In Electromagnetics Research, Vol. 107, 187-202, 2010.
doi:10.2528/PIER10061807

25. Jiang, W. Q., M. Zhang, and Y. Wang, "CUDA-based radiative transfer method with application to the em scattering from a two-layer canopy model," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2509-2521, 2010.
doi:10.1163/156939310793675772

26. Tay, W. C., D. Y. Heh, and E. L. Tan, "Gpu-accelerated fundamental adi-FDTD with complex frequency shifted convolutional perfectly matched layer," Progress In Electromagnetics Research M, Vol. 14, 177-192, 2010.
doi:10.2528/PIERM10090605

27. Qinn, M. J., Parallel Programming in C with MPI and OpenMP,, McGraw Hill, 2004.

28. http://www.sccas.cn/gb/index.html..