1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ ," Soviet Physics Uspekhi, Vol. 10, No. 4, Jan.--Feb. 1968.
2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques,, Vol. 47, 2075-2084, Nov. 1999.
3. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, 4773, Jun. 17, 1996.
4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184, May 1, 2000.
5. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, Apr. 6, 2001.
6. Caloz, C., H. Okabe, T. Iwai, and T. Itoh, "Transmission line approach of left-handed (LH) materials," Proc. USNC/URSI, Vol. 1, No. 39, San Antonio, TX, Jun. 2002.
7. Iyer, A. K. and G. V. Eleftheriades, "Negative refractive index metamaterials supporting 2-D waves," Proc. IEEE MTT-S Int. Symp., Vol. 2, 1067-1070, San Antonio, TX, Jun. 2002.
8. Eleftheriades, G. V., A. K. Iyer, and P. C. Kramer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 12, Dec. 2002.
doi:10.1109/TMTT.2002.805197
9. Naghsvarian-Jahromi, M., "Novel compact meta-material tunable quasi elliptic band-pass filter using microstrip to slotline transition," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2371-2382, 2010.
doi:10.1163/156939310793675808
10. Choi, J. and S. Lim, "Frequency and radiation pattern reconfigurable small metamaterial antenna using its extraordinary zeroth-order resonance," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14--15, 2119-2127, 2010.
11. Alici, K. B., A. E. Serebryannikov, and E. Ozbay, "Radiation properties and coupling analysis of a metamaterial based, dual polarization, dual band, multiple split ring resonator antenna," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1183-1193, 2010.
doi:10.1163/156939310791586188
12. Sabah, C., "Tunable metamaterial design composed of triangular split ring resonator and wire strip for S- and C-microwave bands," Progress In Electromagnetics Research B, Vol. 22, 341-357, 2010.
doi:10.2528/PIERB10051705
13. Wang, J., S. Qu, H. Ma, J. Hu, Y. Yang, X. Wu, Z. Xu, and M. Hao, "A dielectric resonator-based route to left-handed metamaterials," Progress In Electromagnetics Research B, Vol. 13, 133-150, 2009.
doi:10.2528/PIERB09011103
14. Penalosa-Camacho, C., T. M. Martin-Guerrero, J. Esteban, and J. E. Page, "Derivation and general properties of artificial lossless balanced composite right/left-handed transmission lines of arbitrary order," Progress In Electromagnetics Research B, Vol. 13, 151-169, 2009.
doi:10.2528/PIERB09011002
15. Qiang, L., H. Lu, W. Zhao, J.-K. Wang, and B. Liu, "Simplified extended composite right/left-handed transmission line structure for dual-band applications," Progress In Electromagnetics Research Letters, Vol. 15, 137-144, 2010.
doi:10.2528/PIERL10050608
16. Debye, P., "Das elektromagnetische feld um ein zylinder und die theorie des regenbogens," Physik. Z., Vol. 9, 775, 1908.
17. Watson, G. N., "The diffraction of electric waves by the earth,"," Proceedings of the Royal Society of London, Vol. 95, No. 666, 83-99, 1918.
doi:10.1098/rspa.1918.0050
18. Pumplin, J., "Application of Sommerfeld-Watson transformation to an electrostatics problem," American Journal of Physics, Vol. 37, No. 7, 737-739, 1969.
doi:10.1119/1.1975793
19. Uberall, H., "Acoustic scattering from elastic cylinders and spheres: Surface waves (Watson transform) and transmitted waves," Diffusion et Diffraction, Vol. 2, No. 5, 353-387, 1985.
20. Li, M. K. and W. C. Chew, "A new Sommerfeld-Watson transformation in 3-D," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 75-78, Dec. 2004.
21. Wang, H.-L., Q. Wu, X.-J. He, J. Wu, and L.-W. Li, "Computation of wave scattering problems from a spheric body: Derivation of the new Sommerfeld-Watson transformation," PIERS Online, Vol. 1, No. 6, 707-710, 2005.
doi:10.2529/PIERS110821575600
22. Valagiannopoulos, C. A., "An overview of the Watson transformation presented through a simple example," Progress In Electromagnetics Research, Vol. 75, 137-152, 2007.
doi:10.2528/PIER07052502
23. Sha, W. E. I. and W. C. Chew, "High frequency scattering from an impenetrable sphere," Progress In Electromagnetics Research, Vol. 97, 291-325, 2009.
doi:10.2528/PIER09100102
24. Inada, H., "Diffracted field computations by a series expansion," Radio Science, Vol. 10, 205-220, Feb. 1975.
doi:10.1029/RS010i002p00205
25. Sasamori, T., T. Uno, and S. Adachi, "High-frequency analysis of electromagnetic scattering due to a dielectric cylinder," Electronics and Communications in Japan Part II --- Electronics, Vol. 78, No. 4, 41-55, 1995.
doi:10.1002/ecjb.4420780405
26. Nussenzweig, H. M., "High-frequency scattering by a transparent sphere. 1. Direct reflection and transmission," Journal of Mathematical Physics, Vol. 10, No. 1, 82-124.
doi:10.1063/1.1664764
27. Nussenzweig, H. M. and , "High-frequency scattering by an impenetrable sphere," Annals of Physics, Vol. 34, 23-95, 1965.
doi:10.1016/0003-4916(65)90041-2
28. Şen, S. G. and M. Kuzuoğlu, "Analysis of high frequency plane wave scattering from a double negative cylinder via the Modiˉed Watson transformation and Debye expansion," Progress In Electromagnetics Research, Vol. 84, 55-92, 2008.
doi:10.2528/PIER08061703
29. Şen, S. G., Investigation of Electromagnetic Wave Propagation in Double Negative Metamaterials, Ph.D. Thesis, Middle East Technical University, Ankara, Türkiye, 2008, http://etd.lib.metu.edu.tr/upload/12609748/index.pdf..