1. Kung, C.-Y., Y.-C. Chen, S.-M. Wu, C.-F. Yang, and J.-S. Sun, "A novel compact 2.4/5.2 GHz dual wideband bandpass filter with deep transmission zero," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 617-628, 2011.
doi:10.1163/156939311794827168 Google Scholar
2. Razalli, M. S., A. Ismail, M. A. Mahdi, and M. N. Bin Hamidon, "Novel compact microstrip ultra-wideband filter utilizing short-circuited stubs with less vias," Progress In Electromagnetics Research, Vol. 88, 91-104, 2008.
doi:10.2528/PIER08102303 Google Scholar
3. Yang, R.-Y., C.-M. Hung, C.-Y. Hung, and C.-C. Lin, "Design of a high band isolation diplexer for GPS and WLAN system using modified stepped-impedance resonators," Progress In Electromagnetics Research, Vol. 107, 101-114, 2010.
doi:10.2528/PIER10060913 Google Scholar
4. Yang, R.-Y., C.-M. Hung, C.-Y. Hung, and C.-C. Lin, "A high performance bandpass filter with a wide and deep stopband by using square stepped impedance resonators," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1673-1683, 2010.
doi:10.1163/156939310792149722 Google Scholar
5. Wu, H.-W. and R.-Y. Yang, "Design of a triple-passband microstrip bandpass filter with compact size," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2333-2341, 2010.
doi:10.1163/156939310793675736 Google Scholar
6. Chen, J., Z.-B.Weng, Y.-C. Jiao, and F.-S. Zhang, "Lowpass filter design of hilbert curve ring defected ground structure," Progress In Electromagnetics Research, Vol. 70, 269-280, 2007.
doi:10.2528/PIER07012603 Google Scholar
7. NaghshvarianJahromi, M., "Novel compact meta-material tunable quasi elliptic band-pass filter using microstrip to slotline transition," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2371-2382, 2010.
doi:10.1163/156939310793675808 Google Scholar
8. Shen, W., W. Y. Yi, and X.-W. Sun, "Compact microstrip tri-section bandpass filters with mixed couplings," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1807-1816, 2010. Google Scholar
9. Lin, S. C., C. H. Wang, and C. H. Chen, "Novel patch-via-spiral resonators for the development of miniaturized bandpass filters with transmission zeros," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 137-146, 2007.
doi:10.1109/TMTT.2006.888579 Google Scholar
10. Chen, C. F., T. Y. Huang, and R. B.Wu, "Novel compact net-type resonators and their applications to microstrip bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 755-762, 2006.
doi:10.1109/TMTT.2005.862626 Google Scholar
11. Lim, T. B. and L. Zhu, "Differential-mode wideband bandpass filter with three transmission zeros under common-mode operation," Asia Pacific Microwave Conference, APMC 2009, 159-162, 2009.
doi:10.1109/APMC.2009.5385398 Google Scholar
12. Lim, T. B. and L. Zhu, "A differential-mode wideband bandpass filter on microstrip line for UWB application," IEEE Microwave and Wireless Components Letters, Vol. 19, 632-634, 2009. Google Scholar
13. Lim, T. B. and L. Zhu, "Differential-mode ultra-wideband bandpass filter on microstrip line," Electronics Letters, Vol. 45, 1124-1125, 2009.
doi:10.1049/el.2009.1416 Google Scholar
14. Wu, C. H., C. H.Wang, and C. H. Chen, "Novel Balanced coupled-line bandpass filters with common-mode noise suppression," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 287-295, 2007.
doi:10.1109/TMTT.2006.889147 Google Scholar
15. Wu, C. H., C. H. Wang, and C. H. Chen, "Stopband-extended balanced bandpass filter using coupled stepped-impedance resonators," IEEE Microwave and Wireless Components Letters, Vol. 17, 507-509, 2007.
doi:10.1109/LMWC.2007.899311 Google Scholar
16. Wu, C. H., C. H. Wang, and C. H. Chen, "Balanced coupled-resonator bandpass filters using multisection resonators for common-mode suppression and stopband extension," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 1756-1763, 2007.
doi:10.1109/TMTT.2007.901609 Google Scholar
17. Jin, S. and X. Quan, "Balanced bandpass filters using center-loaded half-wavelength resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, 970-977, 2010.
doi:10.1109/TMTT.2010.2042839 Google Scholar
18. Shi, J., J. X. Chen, and Q. Xue, "A novel differential bandpass filter based on double-sided parallel-strip line dual-mode resonator," Microwave and Optical Technology Letters, Vol. 50, 1733-1735, 2008.
doi:10.1002/mop.23493 Google Scholar
19. Zoschke, K., M. J. Wolf, M. Topper, O. Ehrmann, T. Fritzsch, K. Kaletta, F. J. Schmuckle, and H. Reichl, "Fabrication of application specific integrated passive devices using wafer level packaging technologies," IEEE Transactions on Advanced Packaging, Vol. 30, 359-368, 2007.
doi:10.1109/TADVP.2007.901770 Google Scholar
20. Clearfield, H. M., J. L. Young, S. D. Wijeyesekera, and E. A. Logan, "Wafer-level chip scale packaging: Benefits for integrated passive devices," IEEE Transactions on Advanced Packaging, Vol. 23, 247-251, 2000.
doi:10.1109/6040.846642 Google Scholar
21. Wang, C.-C., H.-A. Yang, Y. C. Shyu, M.-H. Li, C.-T. Chiu, and C.-P. Hung, "Analysis of high performance RF integrated passive circuits using the glass substrate," IEEE 9th VLSI Packaging Workshop of Japan, VPWJ 2008, 135-138, 2008.
doi:10.1109/VPWJ.2008.4762233 Google Scholar
22. Ulrich, R. and L. Schaper, Integrated Passive Component Technology, 1st Edition, Wiley-IEEE Press, 2003.
doi:10.1002/9780471722939
23. Long, J. R., "Monolithic transformers for silicon RF IC design," IEEE Journal of Solid-state Circuits, Vol. 35, 1368-1382, 2000.
doi:10.1109/4.868049 Google Scholar
24. Huang, C. H., T.-C. Wei, T.-S. Horng, J.-Y. Li, C.-C. Chen, C.-C. Wang, C.-T. Chiu, and C.-P. Hung, "Design and modeling of planar transformer-based silicon integrated passive devices for wireless applications," IEEE Radio Frequency Integrated Circuits Symposium, RFIC 2009, 167-170, 2009.
doi:10.1109/RFIC.2009.5135514 Google Scholar
25. Chen, C.-H., C.-H. Huang, T.-S. Horng, S.-M. Wu, C.-T. Chiu, C.-P. Hung, J.-Y. Li, and C.-C. Chen, "Very compact transformer-coupled balun-integrated bandpass filter using integrated passive device technology on glass substrate," 2010 IEEE MTT-S International Microwave Symposium Digest (MTT), 1372-1375, 2010. Google Scholar
26. Hongtak, L., P. Changkun, and H. Songcheol, "A Quasi-four-pair class-E CMOS RF power amplifier with an integrated passive device transformer," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, 752-759, 2009.
doi:10.1109/TMTT.2009.2015122 Google Scholar
27. Chen, H.-K., Y.-C. Hsu, T.-Y. Lin. D.-C. Chang. Y.-Z. Juang, and S.-S. Lu, "CMOS wideband LNA design using integrated passive device," IEEE MTT-S International Microwave Symposium Digest, MTT'09, 673-676, 2009. Google Scholar
28. Grima, M. L., S. Barth, S. Bosse, B. Jarry, P. Gamand, P. Meunier, and B. Barelaud, "A differential SiP (LNA-filter-mixer) in silicon technology for the SKA project," European Microwave Conference, 1129-1132, 2007.
doi:10.1109/EUMC.2007.4405397 Google Scholar
29. Zampardi, P., "Performance and modeling of Si and SiGe for power amplifiers," 2007 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 13-17, 2007.
doi:10.1109/SMIC.2007.322758 Google Scholar
30. Yu, J.-I., J.-M. Yook, J.-C. Park, C.-H. Kim, and Y.-S. Kwon, "Compact front end modules for WLAN applications with integrated passive devices using selectively anodized aluminum substrate," 2010 European Microwave Integrated Circuits Conference (EuMIC), 329-332, 2010. Google Scholar
31. Hong, J.-S. G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, New York, 2001.
doi:10.1002/0471221619
32. Bockelman, D. E. and W. R. Eisenstadt, "Combined differential and common-mode scattering parameters: Theory and simulation," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, 1530-1539, 1995.
doi:10.1109/22.392911 Google Scholar
33. Eisenstadt, W. R., B. Stengel, and B. M. Thompson, Microwave Differential Circuit Design Using Mixed-mode S-parameters, Artech House, Boston, 2006.