Vol. 121
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-11-04
Concentration of the Specific Absorption Rate Around Deep Brain Stimulation Electrodes During MRI
By
Progress In Electromagnetics Research, Vol. 121, 469-484, 2011
Abstract
During Magnetic Resonance Imaging (MRI), the presence of an implant such as a Deep Brain Stimulation (DBS) lead in a patient's body can pose a significant risk. This is due to the fact that the MR radiofrequency (RF) field can achieve a very high strength around the DBS electrodes. Thus the specific absorption rate (SAR), which is proportional to the square of the magnitude of the RF electric field, can have a very high concentration in the near-field region of the electrodes. The resulting tissue heating can reach dangerous levels. The degree of heating depends on the level of SAR concentration. The effects can be severe, leading to tissue ablation and brain damage, and significant safety concerns arise whenever a patient with an implanted DBS lead is exposed to MR scanning. In this paper, SAR, electric field, and temperature rise distributions have been found around actual DBS electrodes. The magnitude and spatial distribution of the induced temperature rises are found to be a function of the length and structure of the lead device, tissue properties and the MR stimulation parameters.
Citation
Syed Mohsin , "Concentration of the Specific Absorption Rate Around Deep Brain Stimulation Electrodes During MRI," Progress In Electromagnetics Research, Vol. 121, 469-484, 2011.
doi:10.2528/PIER11022402
http://www.jpier.org/PIER/pier.php?paper=11022402
References

1. Zhang, Y., S. Wang, and L. Wu, "A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO," Progress In Electromagnetics Research, Vol. 109, 325-343, 2010.

2. Rezai, A. R., D. Finelli, J. A. Nyenhuis, G. Hrdlicka, J. Tkach, A. Sharan, P. Rugieri, P. H. Stypulkowski, and F. G. Shellock, "Neurostimulation systems for deep brain stimulation: In vitro evaluation of magnetic resonance imaging-related heating at 1.5 T," J. Magn. Reson. Imaging, Vol. 15, No. 3, 241-250, Mar. 2002.

3. Dormont, D., et al., "Chronic thalamic stimulation with three-dimensional MR stereotactic guidance," AJNR Am J. Neuroradiol, Vol. 18, 1093-1097, 1997.

4. Gemio, J., J. Parron, and J. Soler, "Human body effects on implantable antennas for ism bands applications: Models comparison and propagation losses study," Progress In Electromagnetics Research, Vol. 110, 437-452, 2010.

5. Iero, D., T. Isernia, A. F. Morabito, I. Catapano, and L. Crocco, "Optimal constrained field focusing for hyperthermia cancer therapy: A feasibility assessment on realistic phantoms," Progress In Electromagnetics Research, Vol. 102, 125-141, 2010.

6. Christopoulou, M., S. Koulouridis, and K. S. Nikita, "Parametric study of power absorption patterns induced in adult and child head models by small helical antennas," Progress In Electromagnetics Research, Vol. 94, 49-67, 2009.

7. Biagi, P. F., L. Castellana, T. Maggipinto, G. Maggipinto, T. Ligonzo, L. Schiavulli, D. Loiacono, A. Ermini, M. Lasalvia, G. Perna, and V. Capozzi, "A reverberation chamber to investigate the possible effects of `in vivo' exposure of rats to 1.8 GHz electromagnetic fields: A preliminary study," Progress In Electromagnetics Research, Vol. 94, 133-152, 2009.

8. Nyenhuis, J. A., S. M. Park, R. Kamondetdacha, A. Amjad, F. G. Shellock, and A. Rezai, "MRI and implanted medical devices: Basic interactions with an emphasis on heating," IEEE Trans. Device and Materials Reliability, Vol. 5, No. 3, Sep. 2005.

9. Islam, M. T., M. R. I. Faruque, and N. Misran, "Design analysis of ferrite sheet attachment for SAR reduction in human head," Progress In Electromagnetics Research, Vol. 98, 191-205, 2009.

10. Chou, H.-H., H.-T. Hsu, H.-T. Chou, K.-H. Liu, and F.-Y. Kuo, "Reduction of peak SAR in human head for handset applications with resistive sheets (R-cards) ," Progress In Electromagnetics Research, Vol. 94, 281-296, 2009.

11. Manapati, M. B. and R. S. Kshetrimayum, "SAR reduction in human head from mobile phone radiation using single negative metamaterials ," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1385-1395, 2009.

12. Hirata, A., H. Sugiyama, and O. Fujiwara, "Estimation of core temperature elevation in humans and animals for whole-body averaged SAR," Progress In Electromagnetics Research, Vol. 99, 53-70, 2009.

13. Mohsin, S. A., N. M. Sheikh, and U. Saeed, "MRI induced heating of deep brain stimulation leads," Physics in Medicine & Biology, Vol. 53, 5745-5756, 2008.

14. Park, S. M., R. Kamondetdacha, A. Amjad, and J. A. Nyenhuis, "MRI safety: RF induced heating on straight wires," IEEE Trans. Magn., Vol. 41, No. 10, 4197-4199, Oct. 2005.

15. Park, S. M., MRI safety: Radiofrequency field induced heating of implanted medical devices, Ph.D. Thesis, Purdue University, 2006.

16. Harrington, R. F., Field Computation by Moment Methods, Wiley-Interscience and IEEE Press Series on Electromagnetic Wave Theory, 1993.

17. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Di®erence Time-Domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.

18. Sullivan, D. M., "Electromagnetic Simulation Using the FDTD Method," IEEE Press Series on RF and Microwave Technology, 2000.

19. Volakis, J. L., A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics, The IEEE/OUP Series on Electromagnetic Wave Theory, 2002.

20. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd Ed., John Wiley and Sons, 2002.

21. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "Scattering from large 3-d piecewise homogeneous bodies through linear embedding via green's operators and arnoldi basis functions," Progress In Electromagnetics Research, Vol. 103, 305-322, 2010.

22. Mohsin, S. A., "A simple EM model for determining the scattered magnetic resonance radiofrequency field of an implanted medical device," Progress In Electromagnetics Research M, Vol. 14, 1-14, 2010.

23. Amjad, A., Specific absorption rate during magnetic resonance imaging, Ph.D. Thesis, Purdue University, 2007.

24. Amjad, A., R. Kamondetdacha, A. V. Kildishev, S. M. Park, and J. A. Nyenhuis, "Power deposition inside a phantom for testing of MRI heating," IEEE Trans. Magn., Vol. 41, 4185-4187, 2005.

25. Mohsin, S. A., N. M. Sheikh, F. Mahmood, and W. Abbas, "General considerations regarding scattering of the MRI RF field by implanted medical devices ," Pakistan Journal of Engineering and Applied Sciences, Vol. 6, 17-25, Jan. 2010.

26. Mohsin, S. A., N. M. Sheikh, and U. Saeed, "MRI induced heating of deep brain stimulation leads: Effect of the air-tissue interface," Progress In Electromagnetics Research, Vol. 83, 81-91, 2008.

27. Mohsin, S. A., J. Nyenhuis, and R. Masood, "Interaction of medical implants with the MRI electromagnetic fields," Progress In Electromagnetics Research C, Vol. 13, 195-202, 2010.