Vol. 118
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-07-06
ANN-Based Pad Modeling Technique for MOSFET Devices
By
Progress In Electromagnetics Research, Vol. 118, 303-319, 2011
Abstract
In this paper, an approach for the pad modeling of the test structure for Metal Oxide Semiconductor Field Effect Transistor (MOSFET) up to 40\,GHz is presented. The approach is based on a combination of the conventional equivalent circuit model and artificial neural network (ANN). The pad capacitances and series resistors are directly obtained from EM (electromagnetic) simulation of the $S$ parameters with different size of pad and operating frequency. The parasitic elements in the test structure can be modeled by using a sub artificial neural network (SANN). So the pad capacitances and series resistors can be regarded as functions of the dimensions of the pad structure and operating frequencies by using SANN. Good agreement between the ANN-based modeling and EM simulation results has been demonstrated. In order to remove the impact of the parasitic elements, the de-embedding procedure for MOSFET device using ANN-based pad model is also demonstrated.
Citation
Xiuping Li Yushan Li Junhui Zhao , "ANN-Based Pad Modeling Technique for MOSFET Devices," Progress In Electromagnetics Research, Vol. 118, 303-319, 2011.
doi:10.2528/PIER11042702
http://www.jpier.org/PIER/pier.php?paper=11042702
References

1. Li, X. and J. Gao, "Pad modeling by using artificial neural network," Progress In Electromagnetics Research, Vol. 74, 167-180, 2007.
doi:10.2528/PIER07041201

2. Cheng, Y., M. J. Deen, and C. H. Chen, "MOSFET modeling for RF IC design," IEEE Trans. Electron. Devices, Vol. 52, 1286-1303, Jul. 2005.
doi:10.1109/TED.2005.850656

3. Han, S., J. Kim, and D. P. Neikirk, "Impact of pad de-embedding on the extraction of interconnect parameters," IEEE APS, Vol. 1, 76-81, 2006.

4. Vandamme, E. P., D. M. M.-P. Schreurs, and G. Van Dinther, "Improved three-step de-embedding method to accurately account for the influence of pad parasitics in silicon on wafer RF test-structures," IEEE Trans. Electron. Devices, Vol. 48, No. 4, 737-742, 2001.
doi:10.1109/16.915712

5. Kolding, T. E., "A four-step method for de-embedding gigahertz on-wafer CMOS measurements," IEEE Trans. Electron. Devices, Vol. 47, 727-742, Apr. 2001.

6. Adem, A. and M. Ismail, "Pad de-embedding in RF CMOS," Circuit and System, 8-11, 2001.

7. Li, X., J. Gao, and G. Boeck, "Printed dipole antenna design by arti¯cial neural network modeling for RFID application," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 16, No. 6, 607-611, 2006.
doi:10.1002/mmce.20183

8. Li, X., J. Gao, J.-G. Yook, and X. Chen, "Bandpass filter design by artificial neural network modeling," Asia-Pacific Microwave Conference, Vol. 2, 713-716, 2005.

9. Zhang, Q. J., K. Gupta, C. Devabhaktuni, and K. Vijay, "Artificial neural networks for RF and microwave design --- from theory to practice," IEEE Trans. Microwave Theory Tech., Vol. 51, 1339-1350, 2003.
doi:10.1109/TMTT.2003.809179

10. Yildiz, C. and M. Turkmen, "Quasi-static models based on artificial neural networks for calculating the characteristic parameters of multilayer cylindrical coplanar waveguide and strip line," Progress In Electromagnetics Research B, Vol. 3, 1-22, 2008.
doi:10.2528/PIERB07112806

11. Pascht, A., et al., "Parasitic extraction for silicon MOSFETS," International IEEE MTT/AP Workshop on MMIC Design, Packaging and System Applications , 23-24, Oct. 1998.

12. Cheng, J., et al., "Analysis and modeling of the pads for RF CMOS based on EM simulation," Microwave Journal, Vol. 53, No. 10, 96-107, Oct. 2010.

13. Ayestarán, R. G. and F. Las-Heras, "Near field to far field transformation using neural networks and source reconstruction," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2201-2213, 2006.
doi:10.1163/156939306779322594

14. Mohamed, M. D. A., E. A. Soliman, and M. A. El-Gamal, "Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1101-1114, 2006.
doi:10.1163/156939306776930240

15. Jin, L., C. L. Ruan, and L. Y. Chun, "Design E-plane bandpass filter based on EM-ANN model," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1061-1069, 2006.
doi:10.1163/156939306776930259

16. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of air-suspended trapezoidal and rectangular-shaped microshield lines," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 9, 1161-1174, 2006.
doi:10.1163/156939306777442917

17. Acikgoz, H., Y. Le Bihan, O. Meyer, and L. Pichon, "Microwave characterization of dielectric materials using bayesian neural networks ," Progress In Electromagnetics Research C, Vol. 3, 169-182, 2008.
doi:10.2528/PIERC08030603

18. Vakula, D. and N. V. S. N. Sarma, "Fault diagnosis of planar antenna arrays using neural networks," Progress In Electromagnetics Research M, Vol. 6, 35-46, 2009.
doi:10.2528/PIERM09011204

19. Michalski, J. J., "Artificial neural networks approach in microwave filter tuning ," Progress In Electromagnetics Research M, Vol. 13, 173-188, 2010.
doi:10.2528/PIERM10053105

20. Li, X., J. Gao, and G. Boeck, "Microwave nonlinear device modeling using artificial neural network," Semicond. Sci. Technol., Vol. 21, 833-840, 2006.
doi:10.1088/0268-1242/21/7/001

21. Yoon, J., H. Seo, I. Choi, and B. Kim, "Wideband LNA using a negative gm cell for improvement of linearity and noise figure," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 619-630, 2010.
doi:10.1163/156939310791036412

22. Shi, X., K. S. Yeo, W. M. Lim, M. A. Do, and C. C. Boon, "A SPICE compatible model of on-wafer coupled interconnects for CMOS FRICs ," Progress In Electromagnetics Research, Vol. 102, 287-299, 2010.
doi:10.2528/PIER10010608

23. Lee, M.-W., S.-H. Kam, Y.-S. Lee, and Y.-H. Jeong, "A highly efficient three-stage Doherty power amplifier with flat gain for WCDMA applications," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2537-2545, 2010.
doi:10.1163/156939310793675619

24. Sacha, G.-M., F. D. B. Rodriguez Ortiz, E. Serrano Jerez, and P. Varona Martinez, "Generalized image charge method to calculate electrostatic magnitudes at the nanoscale powered by artificial neural networks," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1145-1155, 2010.
doi:10.1163/156939310791586160

25. Jacobs, J. P. and J. P. de Villiers, "Gaussian-process-regression-based design of ultrawide-band and dual-band CPW-FED slot antennas," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1763-1772, 2010.