1. Celozzi, S., R. Araneo, and G. Lovat, Electromagnetic Shielding, Wiley, New York, 2008.
2. Neelakanta, P. S., Handbook of Electromagnetic Material: Monolithic and Composite Versions and Their Applications, CRC Press, Boca Raton, FL, 1995.
3. Koledintseva, M. Y., J. Xu, S. De, J. L. Drewniak, Y. He, and R. Johnson, "Systematic analysis and engineering of absorbing materials containing magnetic inclusions for EMC applications," IEEE Trans. Magn., Vol. 47, No. 2, 317-323, Feb. 2011.
doi:10.1109/TMAG.2010.2084991 Google Scholar
4. Koledintseva, M., K. N. Rozanov, and J. L. Drewniak, "Engineering, modeling and testing of composite absorbing materials for EMC applications ," Advances in Composite Material --- Ecodesign and Analysis, B. Attaf (ed.), Chapter 13, 291-316, InTech, Mar. 2011. Google Scholar
5. Naito, Y. and K. Suetake, "Application of ferrite to electromagnetic wave absorber and its characterization," IEEE Trans. Microw. Theory Techn., Vol. 19, 65-72, Jan. 1971.
doi:10.1109/TMTT.1971.1127446 Google Scholar
6. Shin, J. Y. and J. H. Oh, "The microwave absorbing phenomena of ferrite microwave absorbers," IEEE Trans. Magn., Vol. 29, No. 6, 3437-3439, Nov. 1993.
doi:10.1109/20.281188 Google Scholar
7. Anantharaman, M., K. Malini, S. Sindhu, E. M. Mohammed, S. K. Date, S. D. Kulkarni, P. A. Joy, and P. Kurian, "Tailoring magnetic and dielectric properties of rubber ferrite composites containing mixed ferrites," Bulletin of Materials Science, Vol. 24, No. 6, 623-631, Dec. 2001.
doi:10.1007/BF02704011 Google Scholar
8. Chung, Y.-C., D.-Y. Kim, and D.-C. Park, "Design of broadband electromagnetic absorber using NiZn/MnZn hybrid structure," Proc. IEEE Symp. Electromag. Compat., 409-412, Austin, TX, Aug. 1997. Google Scholar
9. Kazantseva, N. E., J. Vilcakova, V. Kresalek, P. Saha, I. Sapurina, and J. Stejskal, "Magnetic behavior of composites containing polyaniline-coated manganese-zinc ferrite," Journal of Magnetism and Magnetic Materials (JMMM), Vol. 269, No. 1, 30-37, Feb. 2004.
doi:10.1016/S0304-8853(03)00557-2 Google Scholar
10. Bregar, V., "Potential application of composite with ferromagnetic nanoparticles in microwave absorber," IEEE Trans. Magn., Vol. 40, 1679-1684, 2004.
doi:10.1109/TMAG.2004.826622 Google Scholar
11. Musal, H. and H. Hahn, "Thin-layer electromagnetic absorber design," IEEE Trans. Magn., Vol. 25, No. 5, 3851-3853, May 1989.
doi:10.1109/20.42454 Google Scholar
12. Maslovski, S. I., P. M. T. Ikonen, I. Kolmakov, S. A. Tretyakov, and M. Kaunisto, "Artificial magnetic materials based on the new magnetic particle: Metasolenoid," Progress In Electromagnetics Research, Vol. 54, 61-81, 2005.
doi:10.2528/PIER04101101 Google Scholar
13. Ott, H., Noise Reduction Techniques in Electronic Systems, Wiley, New York, 1988.
14. Paul, C. R., Introduction to Electromagnetic Compatibility, Wiley, New York, 1992.
doi:10.1002/0471758159
15. Vinoy, K. J. and R. M. Jha, Radar Absorbing Materials --- From Theory to Design and Characterization, Kluwer Academic Publishers, Boston, MA, 1996.
16. Koledintseva, M. Y., V. V. Bodrov, I. V. Sourkova, M. M. Sabirov, and V. I. Sourkov, "Unified spectral technique application for study of radiator behavior near planar layered composites," Progress In Electromagnetic Research, Vol. 66, 317-357, 2006.
doi:10.2528/PIER06111701 Google Scholar
17. Nicolson, A. M. and G. Ross, "Measurement of the intrinsic properties of materials by time domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, 377-382, Nov. 1970. Google Scholar
18. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies ," Proc. IEEE, Vol. 62, 33-36, Jan. 1974.
doi:10.1109/PROC.1974.9382 Google Scholar
19. Baker-Jarvis, J., "Transmission/reflection and short-circuit line permittivity measurements," Technical Note 1341, Department of Commerce, NIST, US, Jul. 1990. Google Scholar
20. Agilent 85071E Materials Measurement Software Agilent Technologies, Technical Overview, Application Note 5988-9472EN, 2006. Google Scholar
21. Tosaka, T., I. Nagano, S. Yagitani, and Y. Yoshimura, "Determining the relative permeability and conductivity of thin materials ," IEEE Trans. Electromag. Compat., Vol. 47, No. 2, 352-360, May 2005.
doi:10.1109/TEMC.2005.847397 Google Scholar
22. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterisation, Wiley, England, 2004.
23. Sanderson, A. E., "Effect of surface roughness on propagation of the TEM mode," Advances in Microwaves, Vol. 7, 2-57, Academic Press, 1971. Google Scholar
24. Holloway, C. L. and E. F. Kuester, "Power loss associated with conducting and superconducting rough surfaces," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 10, 1601-1610, Oct. 2000.
doi:10.1109/22.873886 Google Scholar
25. Matsushima, A. and K. Nakata, "Power loss and local surface impedance associated with conducting rough interfaces," Electronics and Communications in Japan, Part 2, Vol. 89, No. 1, 2006, translated from Denshi Joho Gakkai Ronbunshi, Vol. J88-C, No. 7, 502-511, Jul. 2005. Google Scholar
26. Koledintseva, M., A. Koul, F. Zhou, J. Drewniak, and S. Hinaga, "Surface impedance approach to calculate loss in rough conductor coated with dielectric layer," IEEE Symp. Electromag. Compat., 790-795, Fort Lauderdale, FL, Jul. 2010. Google Scholar
27. Markov, G. T., B. M. Petrov, and G. P. Grudinskaya, Electrodynamics and Radio Wave Propagation, Chapter 6.3, ovetskoye Radio, Moscow, 1979 (in Russian).
28. Collin, R. E., Field Theory of Guided Waves, 2nd Ed., Chapter 11, IEEE, Wiley, 1991.
29. Goubau, G., "Surface waves and their application to transmission lines," J. Appl. Phys., Vol. 21, 119-1128, 1950. Google Scholar
30. Baskakov, S. I., Radio Engineering Circuits with Distributed Parameters, Vysschaya Shkola, Moscow, 1980 (in Russian).
31. Pozar, D. M., Microwave Engineering, 2nv Ed., Chapter 3, Wiley, 1998.
32. Koledintseva, M. Y., J. L. Drewniak, T. P. van Doren, D. J. Pommerenke, M. Cocchini, and D. M. Hockanson, "Method of edge currents for calculating mutual external inductance in a microstrip structure ," Progress In Electromagnetic Research, Vol. 80, 197-224, 2008.
doi:10.2528/PIER07101504 Google Scholar