1. Brenner, R. J. and Y. Parisky, "Alternative breast-imaging approaches," Radiol. Clin. N. Am., Vol. 45, 907-923, 2007.
doi:10.1016/j.rcl.2007.06.006 Google Scholar
2. Fear, E. C., "Microwave imaging of the breast," Tech. in Cancer Res. and Treat., Vol. 4, 69-82, 2005. Google Scholar
3. Lazebnik, M., et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, Oct. 2007.
doi:10.1088/0031-9155/52/20/002 Google Scholar
4. Irishina, N., D. Alvarez, O. Dorn, and M. Moscoso, "Structural level set inversion for microwave breast screening," Inverse Problems, Vol. 26, 1-26, 2010.
doi:10.1088/0266-5611/26/3/035015 Google Scholar
5. Shea, J. D., P. Kosmas, B. D. Van Veen, and S. C. Hagness, "Contrast-enhanced microwave imaging of breast tumors: A computational study using 3D realistic numerical phantoms," Inverse Problems, Vol. 26, 1-22, 2010.
doi:10.1088/0266-5611/26/7/074009 Google Scholar
6. Meaney, P. M., et al. "Microwave imaging for neoadjuvant chemotherapy monitoring," Proc. EuCAP, 1-4, Nice, France, 2006. Google Scholar
7. Klemm, M., et al. "Clinical trials of a UWB imaging radar for breast cancer," Proc. EuCAP, 1-4, Barcelona, Spain, 2010. Google Scholar
8. Sill, J., et al. "Tissue sensing adaptive radar for breast cancer detection: Comparison of measured and simulated patient data," 2010 IEEE International Symposium on Antennas and Propagation and CNC/USNC/URSI Radio Science Meeting, 1, 2010. Google Scholar
9. Shea, J. D., P. Kosmas, B. D. Van Veen, and S. C. Hagness, "Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique," Medical Physics, Vol. 37, 4210-4226, Aug. 2010.
doi:10.1118/1.3443569 Google Scholar
10. Johnson, J. E., et al. "Advances in 3D forward-backward time-stepping (FBTS) inverse scattering technique for breast cancer detection ," IEEE Trans. Biomed. Eng., Vol. 56, 2232-2243, Sept. 2009.
doi:10.1109/TBME.2009.2022635 Google Scholar
11. Fhager, A., et al. "Reconstruction quality and spectral content of an electromagnetic time-domain inversion algorithm," IEEE Trans. Biomed. Eng., Vol. 53, 1594-1604, Aug. 2006.
doi:10.1109/TBME.2006.878079 Google Scholar
12. Benedetti, M., et al. "Multiple-shape reconstruction by means of multiregion level sets," IEEE Trans. Geosc. and Remote Sensing, Vol. 48, 2330-2342, May 2010.
doi:10.1109/TGRS.2009.2039144 Google Scholar
13. Benedetti, M., et al. "A multi-resolution technique based on shape optimization for the reconstruction of homogeneous dielectric objects," Inverse Problems, Vol. 25, 1-26, 2009.
doi:10.1088/0266-5611/25/1/015009 Google Scholar
14. Benedetti, M., et al. "A two-step inverse scattering procedure for the qualitative imaging of homogeneous cracks in known host media-Preliminary results ," IEEE Ant. and Wireless Prop. Letters, Vol. 6, 592-595, 2007.
doi:10.1109/LAWP.2007.910954 Google Scholar
15. Eskandari, M. and R. Safian, "Inverse scattering method based on contour deformations using a fast marching method," Inverse Problems, Vol. 26, 1-19, 2010.
doi:10.1088/0266-5611/26/9/095002 Google Scholar
16. Woten, D. A., et al. "Experimental microwave validation of level set reconstruction algorithm," IEEE Trans. Antennas and Propag., Vol. 58, 230-233, Jan. 2010.
doi:10.1109/TAP.2009.2036186 Google Scholar
17. Irishina, N., M. Moscoso, and O. Dorn, "Microwave imagining for early breast cancer detection using a shaped-based strategy," IEEE Trans. Biomed. Eng., Vol. 56, 1143-1153, Apr. 2009.
doi:10.1109/TBME.2009.2012398 Google Scholar
18. Kurrant, D. J. and E. C. Fear, "Technique to decompose near-field reflection data generated from an object consisting of thin dielectric layers," IEEE Trans. Antennas and Propag., 2011 (submitted). Google Scholar
19. Spagnolini, U., "Permittivity measurements of multilayered media with monostatic pulse radar ," IEEE Trans. Geosci. Remote Sens., Vol. 35, 454-463, Mar. 1997.
doi:10.1109/36.563284 Google Scholar
20. Spagnolini, U. and V. Rampa, "Multitarget detection/tracking for monostatic ground penetrating radar: Application to pavement profiling," IEEE Trans. Geosci. Remote Sens., Vol. 37, 383-394, Jan. 1999.
doi:10.1109/36.739074 Google Scholar
21. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection and experimental investigation of simple tumor models ," IEEE Trans. Microwave Theory Tech., Vol. 53, 3312-3319, Nov. 2005.
doi:10.1109/TMTT.2005.857330 Google Scholar
22. Bourqui, J., M. Okoniewski, and E. Fear, "Measurement of microwave frequency signals transmitted through the human breast," Proc. AP-S/URSI, 1, Spokane, Wash, USA, 2011. Google Scholar
23. Sill, J., et al. "Realistic breast models for second generation tissue sensing adaptive radar system," Proc. EuCAP, 1-4, Nov. 2007. Google Scholar
24. Pope, T. L., et al. "Breast skin thickness:Normal range and causes of thickening shown on film-screen mammography," J. Can. Assoc. Radiologists, Vol. 35, 365-368, 1984. Google Scholar
25. Kurrant, D. J. and E. C. Fear, "Regional estimation of the dielectric properties of the breast: skin, adipose, and ¯broglandular tissues," Proc. EuCAP, 2920-2924, Rome, Italy, 2011. Google Scholar
26. Belkebir, K., et al. "Validation of 2D inverse scattering algorithms from multi-frequency experimental data," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 12, 1637-1667, 2000.
doi:10.1163/156939300X00437 Google Scholar
27. Geffrin, J., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental setup and measurement precision," Inverse Problems, Vol. 21, S117-S130, Dec. 2005.
doi:10.1088/0266-5611/21/6/S09 Google Scholar
28. Bourqui, J., E. Fear, and M. Okoniewski, "Versatile ultrawide- band sensor for near-field microwave imaging," Proc. EuCAP, 1-5, Barcelona, Spain, Apr. 12-16, 2010.