Vol. 122
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-11-17
Extraction of Internal Spatial Features of Inhomogeneous Dielectric Objects Using Near-Field Reflection Data
By
Progress In Electromagnetics Research, Vol. 122, 197-221, 2012
Abstract
Ultra-wideband (UWB) microwave radar imaging techniques provide a non-invasive means to extract information related to an object's internal structure. For these applications, a short-duration electromagnetic wave is transmitted into an object of interest and the backscattered fields that arise due to dielectric contrasts at interfaces are measured. In this paper, we present a method that may be used to estimate the time-of-arrival (TOA) parameter associated with each reflection that arises due to a dielectric property discontinuity (or dielectric interface). A second method uses this information to identify the locations of points on these interfaces. When data are collected at a number of sensor locations surrounding the object, the collection of points may be used to estimate the shape of contours that segregate and enclose dissimilar regions within the object. The algorithm is tested with data generated when a cylindrical wave is applied to a number of numerical 2D models of increasing complexity. Moreover, the algorithm's feasibility is evaluated using data generated from breast models constructed from magnetic resonance (MR) breast scans. Results show that this is a promising approach to identifying regions and the internal structure within the breast.
Citation
Douglas J. Kurrant, and Elise C. Fear, "Extraction of Internal Spatial Features of Inhomogeneous Dielectric Objects Using Near-Field Reflection Data," Progress In Electromagnetics Research, Vol. 122, 197-221, 2012.
doi:10.2528/PIER11092105
References

1. Brenner, R. J. and Y. Parisky, "Alternative breast-imaging approaches," Radiol. Clin. N. Am., Vol. 45, 907-923, 2007.
doi:10.1016/j.rcl.2007.06.006

2. Fear, E. C., "Microwave imaging of the breast," Tech. in Cancer Res. and Treat., Vol. 4, 69-82, 2005.

3. Lazebnik, M., et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, Oct. 2007.
doi:10.1088/0031-9155/52/20/002

4. Irishina, N., D. Alvarez, O. Dorn, and M. Moscoso, "Structural level set inversion for microwave breast screening," Inverse Problems, Vol. 26, 1-26, 2010.
doi:10.1088/0266-5611/26/3/035015

5. Shea, J. D., P. Kosmas, B. D. Van Veen, and S. C. Hagness, "Contrast-enhanced microwave imaging of breast tumors: A computational study using 3D realistic numerical phantoms," Inverse Problems, Vol. 26, 1-22, 2010.
doi:10.1088/0266-5611/26/7/074009

6. Meaney, P. M., et al. "Microwave imaging for neoadjuvant chemotherapy monitoring," Proc. EuCAP, 1-4, Nice, France, 2006.

7. Klemm, M., et al. "Clinical trials of a UWB imaging radar for breast cancer," Proc. EuCAP, 1-4, Barcelona, Spain, 2010.

8. Sill, J., et al. "Tissue sensing adaptive radar for breast cancer detection: Comparison of measured and simulated patient data," 2010 IEEE International Symposium on Antennas and Propagation and CNC/USNC/URSI Radio Science Meeting, 1, 2010.

9. Shea, J. D., P. Kosmas, B. D. Van Veen, and S. C. Hagness, "Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique," Medical Physics, Vol. 37, 4210-4226, Aug. 2010.
doi:10.1118/1.3443569

10. Johnson, J. E., et al. "Advances in 3D forward-backward time-stepping (FBTS) inverse scattering technique for breast cancer detection ," IEEE Trans. Biomed. Eng., Vol. 56, 2232-2243, Sept. 2009.
doi:10.1109/TBME.2009.2022635

11. Fhager, A., et al. "Reconstruction quality and spectral content of an electromagnetic time-domain inversion algorithm," IEEE Trans. Biomed. Eng., Vol. 53, 1594-1604, Aug. 2006.
doi:10.1109/TBME.2006.878079

12. Benedetti, M., et al. "Multiple-shape reconstruction by means of multiregion level sets," IEEE Trans. Geosc. and Remote Sensing, Vol. 48, 2330-2342, May 2010.
doi:10.1109/TGRS.2009.2039144

13. Benedetti, M., et al. "A multi-resolution technique based on shape optimization for the reconstruction of homogeneous dielectric objects," Inverse Problems, Vol. 25, 1-26, 2009.
doi:10.1088/0266-5611/25/1/015009

14. Benedetti, M., et al. "A two-step inverse scattering procedure for the qualitative imaging of homogeneous cracks in known host media-Preliminary results ," IEEE Ant. and Wireless Prop. Letters, Vol. 6, 592-595, 2007.
doi:10.1109/LAWP.2007.910954

15. Eskandari, M. and R. Safian, "Inverse scattering method based on contour deformations using a fast marching method," Inverse Problems, Vol. 26, 1-19, 2010.
doi:10.1088/0266-5611/26/9/095002

16. Woten, D. A., et al. "Experimental microwave validation of level set reconstruction algorithm," IEEE Trans. Antennas and Propag., Vol. 58, 230-233, Jan. 2010.
doi:10.1109/TAP.2009.2036186

17. Irishina, N., M. Moscoso, and O. Dorn, "Microwave imagining for early breast cancer detection using a shaped-based strategy," IEEE Trans. Biomed. Eng., Vol. 56, 1143-1153, Apr. 2009.
doi:10.1109/TBME.2009.2012398

18. Kurrant, D. J. and E. C. Fear, "Technique to decompose near-field reflection data generated from an object consisting of thin dielectric layers," IEEE Trans. Antennas and Propag., 2011 (submitted).

19. Spagnolini, U., "Permittivity measurements of multilayered media with monostatic pulse radar ," IEEE Trans. Geosci. Remote Sens., Vol. 35, 454-463, Mar. 1997.
doi:10.1109/36.563284

20. Spagnolini, U. and V. Rampa, "Multitarget detection/tracking for monostatic ground penetrating radar: Application to pavement profiling," IEEE Trans. Geosci. Remote Sens., Vol. 37, 383-394, Jan. 1999.
doi:10.1109/36.739074

21. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection and experimental investigation of simple tumor models ," IEEE Trans. Microwave Theory Tech., Vol. 53, 3312-3319, Nov. 2005.
doi:10.1109/TMTT.2005.857330

22. Bourqui, J., M. Okoniewski, and E. Fear, "Measurement of microwave frequency signals transmitted through the human breast," Proc. AP-S/URSI, 1, Spokane, Wash, USA, 2011.

23. Sill, J., et al. "Realistic breast models for second generation tissue sensing adaptive radar system," Proc. EuCAP, 1-4, Nov. 2007.

24. Pope, T. L., et al. "Breast skin thickness:Normal range and causes of thickening shown on film-screen mammography," J. Can. Assoc. Radiologists, Vol. 35, 365-368, 1984.

25. Kurrant, D. J. and E. C. Fear, "Regional estimation of the dielectric properties of the breast: skin, adipose, and ¯broglandular tissues," Proc. EuCAP, 2920-2924, Rome, Italy, 2011.

26. Belkebir, K., et al. "Validation of 2D inverse scattering algorithms from multi-frequency experimental data," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 12, 1637-1667, 2000.
doi:10.1163/156939300X00437

27. Geffrin, J., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental setup and measurement precision," Inverse Problems, Vol. 21, S117-S130, Dec. 2005.
doi:10.1088/0266-5611/21/6/S09

28. Bourqui, J., E. Fear, and M. Okoniewski, "Versatile ultrawide- band sensor for near-field microwave imaging," Proc. EuCAP, 1-5, Barcelona, Spain, Apr. 12-16, 2010.